Option Pricing and Arbitrage

Martin Baxter, Pembroke College

Contents

Overview

Specific Discrete Case

General Discrete Case

Continuous Case — Black-Scholes
Black-Scholes Generalised

Continuous Case — Further Generalisations
Other Futures Contracts

Conclusion

0 ~1 O O i LN =

1 Overview

We shall show that there is a wide class of financial instruments and securities whose price does not
depend on an economic agent’s assessment of probabilities of future events or on his risk-aversion, but
instead can be determined uniquely from the prices of basic securities already marketed. Essentially this
is possible, because the stream of payments into and outflows from the security, necessitated by holding
it, can be manufactured by trading in the marketed securities, starting with a particular portfolio. The
value of the security is then simply the current market value of that initial portfolio: any less and an
agent could buy the security and sell the initial portfolio short (have a negative holding), which means
that all future net capital flows are zero, and an instant profit of the price difference has been made.
Were the security price greater than the portfolio’s price, one would sell the security short and buy the
portfolio for a similar result. The key economic assumption throughout shall be that there is an absence
of such arbitrage opportunities — that you cannot get ‘something for nothing’.

Building up from the discrete case, we shall firstly consider, as Black-Scholes did in their atavistic
paper [1], a market of a riskless deterministic bond and a single stock, whose log-price is a Brownian
diffusion, and the security being a Furopean call option. Great generalisations are possible, due to
Harrison and Pliska [3] using Tt6 calculus, enabling valuation of different derivative securities, and with
different price processes. Duffie [2] points the way to further economic generalisations and other traded
futures contracts. Throughout we shall use economic assumptions relating to perfect markets, such as
no transaction costs or taxation, and the unlimited ability to sell short (and to buy). Also, we always
work with a finite horizon — we shall always stop at time 7. This makes some of our stochastic calculus
easier, but is a fairly realistic assumption.

Simple mathematics in the discrete case will build up to a rich theory in the continuous case, where
stochastic calculus will be relied on heavily for the manipulation, and even definition, of the processes
involved — price, gain, and portfolio management processes. Finally, we will consider the implication
of the financial and mathematical assumptions made during this discourse.

2 Specific Discrete Case

Most of what follows is adapted from Duffie [2, Chap 22], and is of a motivational and explanatory
nature.

Consider the Land of Nod, in which every year is either good or bad, according to an (unknown)
probabilistic law. Suppose that there are two marketed securities: the drachma, whose value increases
by 5% each year regardless, and the obol whose value increases by 10% in a good year, and remains
constant in a bad one. Suppose now that a new security, the lepta, is introduced, which pays [, in a
good year and [ in a bad one. Pick «, # in R such that
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Then we see that by buying o obols and § drachmae, in a good year we get I, and in a bad one [3.
That is, we have manufactured the lepta by trading in the other two securities. This crucial idea of
manufacturing securities from other securities is due to Black-Scholes [1]. We thus see that the only
possible price for a lepta is oo+ [ (assuming the others have unit price). For if it were less, we would buy
a lepta, and borrow (sell short) o obols and 3 drachmae. Whether the next year were good or bad, the
value of the lepta would enable us to pay back « obols and 3 drachmae at their new value, and keep an
arbitrage profit. Note that (2.2) looks like probabilities of § each have been assigned to good and bad
years and « + 3 is the discounted (at drachma rate) expectation of the value of a lepta. Tn other words
the (discounted) value of a lepta is a martingale under the probability distribution (%, %). This result
will generalise and become central both in the discrete and continuous cases.

For now, note that this distribution depends not on the actual probabilities, but on the securities.
For if, say, the drachma goes up by a factor of » every year, and the obol goes up by a factor of p, in a
good year, and by p; in a bad year (p; # ps), then

1/ r— —7r
a+ﬁ:—< Py, 4 Lo 1b> (2.3)
T \Pg —Pb Pg — Db

Which, for p; < 7 < pg, is a convex combination of /; and [;, that is the expectation under artifical
probability distribution ((r — ps)/(py — ps), (pg — 7)/(pg — Ps)), discounted by the riskless rate. (The
ordering of py, r, py is due to economic assumptions — any other order would result in one of the two
securities being always inferior and never traded.)
Suppose now that the lepta is a security whose value is determined after two years, and is [,, after
two good years, ly; after a good year followed by a bad year, and 4, I35 in the other cases. Setting
r— Db Pg—T

q = qbzi 2.4
g Pg — Db Pg — Db ( )

to be the artifical probabilities derived in (2.3), we see that the value of a lepta after one year is:

L(q4ly9 + ablyp) if first year good
value =< 7 . (2.5)
(qglsg + qslyy) if first year bad.
So deduce the value of a lepta at the start is:
1
r_z(qjlgg + qgaulgs + aglog + a7 1) (2.6)

1
or T—ZIEQ(L)

where L is the (random) worth of the lepta after two years, and @ is the artificial probability law, under
which each year is TID: good with probability ¢,, bad with probability ¢;.

We see that this generalises, so that any security X, which is F,-measurable (F, is the filtration
induced by the results of the years) has value now of:

r"Eqg(X) (2.7)

By value here, we mean as usual, that if someone were prepared to trade in security X for either more
or less than this price, an arbitrage profit could be made by manufacturing X by trading in a portfolio
of drachmae and obols, and selling either X or the portfolio short, against a holding in the other.

Note also that V;, the value of the security at time ¢ is:

Vo= r"UEQ(X | F)

2.8
PV, = Eo(r "X | F) (2:8)

That is, r='V; is a martingale under the law Q. We shall meet this idea again.

3 General Discrete Case

We consider the general case, as set out in Harrison and Pliska [3, §2], with probability space
(92, F,P). The sample space € is finite, all w € Q have positive probabilities, we stop at time T' € N,
and we have a filtration ({F;} : ¢ = 0,...,T), with Fo = {0,Q} and Fr = P(Q).
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We posit a price process S = (S;)1_,, S; = (S?, S}, ..., SK) € RE+L such that S, is F;-measurable,
and S¢ > 0, and that F;, is the information known to everyone at time ¢, that is only the past and present
prices are known. We call the (S°) process the bond, but it has no special properties from the others,
though it will have in continuous time (except without loss, we assume that S = 1).

We assume that one, an economic agent, has a trading strategy ¢, which 1s a previsible stochastic
process of portfolios:

6:=(49,...,65) ¢¢ 1s F;_1-measurable 1<t<T (3.1)

Here, ¢! represents the agent’s holding of security i between times t — 1 and ¢, depending of course
only on prices up to time t — 1. We allow each ¢’ to be unbounded in both directions, that is allowing
unlimited short-selling (negative holdings) and also implies an infinite share capital. Later we shall
consider bounds on ¢ given the security to be valued.

At time ¢, the agent will change his portfolio from ¢: to ¢+41, using F; information only. We say
the strategy is self-financing if there is no net cost in doing so, that is if:

¢t~St = ¢t-|—1~St (1 S 4 S T - 1) (32)

Implicit in this statement is a complete absence of transaction costs, an assumption we shall lean on
heavily.
The value process V() is defined:

Vi(¢) = {ﬁj‘zfo tlfé =7 (3.3)

and describes the value of the portfolio just after the F; information is released at time ¢. So we can
rewrite condition (3.2) as

Vi—Vic1 = AV, = ¢,.AS, (1<t<T) (3.4)

It is common to restrict attention to a set of trading strategies described as admissible, usually
meaning self-financing and such that V;(¢) > 0 almost surely for 0 < ¢ < T, though Harrison &
Pliska [3] show that in the absence of arbitrage this can be weakened to Vp(¢) > 0.

To justify making assumptions about the existence of martingale measures in the continuous case,
they also point out a relationship between the following definitions: a (contingent) claim is an Fp-
measurable non-negative random variable X, which is attainable (in Duffie redundant) if there exists an
admissible trading strategy ¢ such that Vp(¢) = X. An arbitrage opportunity is an admissible trading
strategy ¢ such that Vo(¢) = 0, but E(Vp(¢)) > 0. Set P to be the set of probability measures @
equivalent to P such that (3;S;) is a vector martingale under @, where 3; = 1/57, the discount process.
They then show:

Theorem. There are no arbitrage opportunities if and only if P is non-empty, in which case there is a
unique price for an attainable claim X given by:

Eq(BrX) for any and every Q € P (3.5)

We recognise this as a generalisation of what was observed in Section 2, where there SY = »' and
By = r~t. Tt is instructive to see the proof of this result. (Though we shall simplify a little by taking the
weaker definition of admissibility.)

Call 7 a price systemif 7 : m}"}' — RT such that:

(1) 7(X)=0 <= X =0

(2) = is semilinear, that is 7(aX + 8Y) = an(X) + f=(Y) for «, § positive.
(3) for an admissible trading strategy ¢, #(Vr(¢)) = Vo(9¢).

Lemma. There is a bijection between P and 1I, the set of all price systems, given by:

P —1
Qr— X —Eqg(BrX) (3.6)

A m(S9I4) — 7

3



Proof of lemma
Given ) € P set m(X) = Eg(fBrX), and then clearly m satisfies (1) and (2). Given an admissible ¢,

7(Vr(¢)) = Eq(or.frSr) = Eg(ér.Eq(Br St | Fr-1)) = Eq(ér.-fr-157-1)

as 35 is a @-martingale. The self-financing relation (3.2), and induction show

... =Eqg(¢r—1.8r—157-1) = Eg(¢0.8050) = V()

by the triviality of Fy, so 7 is a price system.

Conversely, given m € TI, set Q(A) = 7(S314). Then (1) implies that @ is equivalent to P, and (2)
implies that @ is a measure. Using (3) with ¢? = 1 and other ¢° zero, then Vp(¢) = S%, and we see
that Q(Q) = 1. Given X € mFj,

Eq(BrX) =) Q)fr(@)X(w) = Y (S7L,)Br(w)X (w)

WwEN wEN

=7 (Z S%IMX(w)ﬁT(w)) = 7(S%Br X) = 7(X) (3.7)

wEN

To show that 85 is a @-martingale, suppose 7 1s a stopping time, fix k, and set ¢ equal to zero except:

of =

1 t<r o_JO t<r
Tl t>T ¢t_{ (3.8)

Sk/SO t>

Check that ¢ is an admissible strategy, then Vp(¢) = S33,S¥, and Vo(¢) = S¥ = 8,55, Then using
(3.7) and condition (3),

Eq(B,5Y) = Eq(BrVr(9)) = 7(Vr(9)) = Vo(8) = BoSh

By Rogers [6, 1.2], A4S is a martingale under Q. Tt is easy to see, using (3.7), that the given maps are
mutual inverses. O

Proof of Theorem

Now we see that if there is a price system 7 and given ¢ admissible with EVr(¢) > 0, then Vi(¢) # 0,
and so m(Vr(¢)) = Vo(é) # 0, so ¢ is not an arbitrage opportunity.

Conversely, if there are no arbitrage opportunities, we set

Xt={Xe m]—"}' “E(X)>1} aclosed convex cone in R
X0 ={ X emFr: X = Vr(¢) ¢ selt-financing, Vo(¢) =0 }

Note that ¢ above need not be admissible, and that X° is a linear subspace of R®. Absence of arbitrage
opportunities implies that X+ N X% = @, so the strict separating hyperplane theorem gives us a linear
functional P on R?, P = 0 on X% and P > 1 on X+, Define 7 on mF; by n(X) = P(X)/P(S9).
Replacing X by X/EX if necessary, we see that P(X) > E(X) for non-negative X, so that 7 is well-
defined and 7(S%) = 1. Clearly 7 satisfies conditions (1) and (2) of the lemma. Given an admissible
trading strategy ¢, define v by ¥ = ¢ —8;0Vo(¢), then Vi () = 0 and + is self-financing. So Vp(v) € X'°,
thus #(Vp(¢)) = 0. But

(Ve () = 7(Vr(9)) — 7(Vo(6)St) = 7(Vr(9)) — Vo(¢) = 0 (3.9)

Given an attainable contingent claim X, with admissible ¢ such that Vp(¢) = X, then the value of the
claim at time 0 must be

Vo(¢) = 7(Vr(¢)) = Eq(Br X) (3.10)

where @ is any measure under which (5S5) is a martingale. If X were offered for sale for less, one could
short sell (borrow) the portfolio and use some, but not all, of the proceeds to buy the claim X now.
Then by time 7', the negative holding incurs a liability of X, which is exactly matched by the realised
claim. This leaves a risk-free profit of the difference in prices (at time 0 prices). Conversely, if agents are
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willing to buy claim X for more than the price (3.10), we would use that money now to buy a portfolio
(with some left over) which would supply the agent at time 7" with exactly our liability X to him.
The absence of arbitrage, in both cases, says that this cannot happen. O

The question of claim pricing in the discrete case now becomes one of characterising the claims
which are attainable. Discrete results have little bearing on the more important continuous case, so we
shall ignore them. Remarking only that Harrison & Pliska [3] discuss results based on the fineness of F;
at each stage, and that in the Land of Nod scenario (section 2), the obols and drachmae are sufficient to
‘span’ the entire set of claims maturing at any given finite time.

4 Continuous Case — Black-Scholes

Historically the first case to be studied was not the discrete case (simple though that is), but a
specification of the continuous case. In their paper of 1973, Black and Scholes [1] considered a two-
security market of stock and bond. Their further assumptions on the price processes were:

bond : S? ="t

1 2
stock : S} = e?Bitlu—zo7)

where B is a Brownian motion relative to (€, F,P). That is to say, the bond has a constant deterministic
rate of return, and the stock has a rate of return which is drifting Brownian motion:

dS{ = S{(adBi+pt)  (by Ito) (4.1

Black-Scholes then derived their famous differential equation, albeit by imprecise methods:
2
%—f(r, t) = rC(z,t)— rxg—i(x, 1) — %azxz%(l‘, t) (4.2)

where C'(S},t) is the value of a claim at time ¢, with boundary condition C'(Sh,T) = X, where X is
the claim (Fr random variable) to be valued. This equation is correct, but we shall derive it by other
means. Their claim was (Sh — ¢)*, a European call option, exercisable at time T' at price e.

The method presented in this section captures more of the spirit of the original work, whilst the
method of the next section is more closely connected with the generalised continuous case. Both are
again based on Black-Scholes’ idea of manufacturing the claim by trading in the two basic securities, and
letting the no-arbitrage assumption force the market price to be the initial portfolio investment required
to manufacture the claim. The difference lies in how this strategy is computed.

Bootstraps

If we posit the existence of a C”i(IR"', [0, T7) function C', which values the claim at time ¢ as C(S}, ),
then we define a strategy ¢ using C', and see that for ¢ to be self-financing, (4.2) is sufficient. Solving
the PDE we see that such a solution exists. So we have attained the claim using an admissible trading
strategy, so its value at any instant (by the arbitrage argument) is simply the value of the portfolio at
that moment, which we shall see really is C'(S},1).

So, suppose C'(+,-) € Cé’i(R"’, [0,7]) is the value function of the claim. Then define

ot =901 1)
@ o (4.3)
of = (C(s1,0) = S 5 (51,0)) /57

So that ¢;.S; := ¢?59 + 1S} = C(S},t). We see that ¢ is continuous and adapted. We say ¢ is
self-financing by analogue with the discrete case (3.4) if d(¢.5): = ¢+.dS;. Which means, we need

d(C(S!,1)) = ¢.dS;

_ac ., 9C 0rC )

now dS} = S} (o dB; + ut), d[S'): = o*(S}H)* dt

5



0C e (00 s PO 00,
Thus dC; = 8xStadBt+<8t + 10°(S;) E + &EStIu dt
oC oC

60.d5s = (c _ g _> 5050 dt) + 251 (o dB + )

oz x
as dS? = rSY dt. Cancelling terms, we see that d(¢.5) = ¢.dS if and only if
5*C 1 L 0C
—8x2 = TC(St ,t) — TSt 8_x

This will be true if the Black-Scholes PDE (4.2) holds. That PDE can be solved (by change of variable,
and then Fourier transform) to derive the Black-Scholes formula:

log 2 + (r + 30°)(T - t>> (T —1) <1og 2+ (r— 30T - t))

(5 — ce r @ (5
o T —1 oT —1t

where ®(ar) = P(N(0,1) < @), is the normal distribution function. We can see that this satisfies

C(z,T) = (x — ), so that C(Sh,T) = (Sh — ¢)* = X. The existence of a smooth solution C' implies
that the assumptions we made were valid and a self-financing trading strategy does exist.

oC 2
E(S},t) + 10?8} (4.4)

C(z,t)=2® < (4.5)

Points to note

(1) Writing Cy(z) to be C(x, T —1t) for t > 0, the value of the claim with time ¢ till maturity. We shall
show shortly that %Ct(l‘) > 0, that 1s we always hope to do better in the longer term than the
shorter term. As Co(z) = (z — )t and C(z) = z, we deduce that (z — )t < Cy(z) < z. In fact,
the picture is of a family of convex curves.

(2) We see also that (z — Cy(x)) — ce™"", as * — oo. A calculation also shows that

b, B log 2 + (r+ 1ot
8_1‘Ct(x) = < 0-\/1?

which is increasing in z and lies in [0,1]. Thus we deduce that C; is convex in z, and more
importantly that ¢} € [0, 1] for all ¢. That is, we always hold a non-negative and bounded amount
of the stock. The value of the bond holding or borrowing is never more than ¢ away from the stock
price S'.

(3) Tf we write

(4.6)

log = + (r + Lo?)t log = + (r — o)t
o = =

v Y v
then C' = 2®(a) — ce "' ®(3), % = ®(«), and
5*C 1 _1,.2
—_— = — 2
0x®  gx2wt
Thus using (4.2),
oc = —r2®(a) + ree " ®(B) + re®(a) + 9% -3a7

ot 2/ 27t

ox _1.2 _rt
= e 2% L rce "' ® >0
2V 2wt (ﬁ)




As claimed earlier.
(4) Ci(z) is independent of y, the initial Brownian drift, or underlying rate of return of the stock. We
shall see why in the next section, as we change measure.

5 Black-Scholes Generalised

We now consider an alternative approach, which gives the same answer as section 4 for the basic
Black-Scholes model, but also generalises the distributional assumption. The distribution is now stated,
and then discussed briefly:

B is CBM(R¥) on (Q, F, P), where P is Weiner measure, and F has usual filtration (F; : 0 <
t <T). The price process S = (5%, 5), where S = (S*,...,S%) and

S = exp < /0 t p(s) ds)

for a deterministic continuous function p : R¥ — R. And S is defined by the stochastic
differential equation:

dSt = /,Lo(St,t) dt—'—O’o(St,t) dBt (51)

where po : RE x Rt — R 5 : RE x RY — L£(R® RX) are Lipschitz continuous in = (the
first coordinate). We further assume that

/JO('I, t) = diag(l‘l, B ,I‘K),ul(l‘, t)
oo(z,t) = diag(z', ..., 25)o1 (2, 1)

where o4 is positive definite, and uq, o1 and 01_1 are bounded in 2 and ¢ (z > 0), and continuous
by necessity.

Notes on assumptions

(1) po, oo are Lipschitz and satisfy a growth condition, so standard SDE theory [7, V.13.1] gives a unique
strong solution to (5.1), which is continuous in ¢, for any constant vector Sp.

(2) We need the boundedness of y; and o7 ' to achieve an explicit martingale for a change of measure.

(3) Black-Scholes is recovered for K = 1, py(z,t) = p, o1(2,t) = o and p(t) = r.

(4) For pi(x,t) = p, o1(z,1) = o, 0 a positive-definite K x K matrix, then

. . . 1 .
Sy = 5§ eXp{O’Z']'B{ + (s — 3 Za?j)t} as in [3, §5]
J

(5) This is scarcely more general than Rogers [6], the only difference being the dependence of py and
oy on z. It is difficult to extend further— Duffie [2, §22K] claims to do so using previous results.
However those results give rise to a new measure @ such that dQ/dP is bounded, which is not what
occurs, even with our tight constraints. His basic approach, though, is unflawed and it inspires what
follows.

Define 8; = 1/S?, the discount process, which is a finite variation continuous process. Set 7; = 3,.5;,
a continuous R¥ -valued semimartingale. Using integration by parts:

dZt = d,@t St —|— ,Bt dSt + d[,@, S]t
= (Bipro — p(t) Z1)dt + Broo d By

Set
w(z,t) .= pi(z/Be,t) — p(H) 1k lg=(1,...,1)eR¥ (5.3)
o(x,t) := o1(x/f, 1) ’
Then
dZ, = diag(Z}, ..., ZE) {p(Zy, 1) dt + o(Z,, 1) d By} (5.4)
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Note that p being bounded implies that y and o~' are bounded. Set 6, := —o~'(Z;,t)u(Z;,t), which
is a continuous adapted bounded R¥-valued process. Then the Cameron-Martin-Girsanov theorem
[7, TV.38.9] says that

1 1
€ =E(0-B), = exp {/0 0,.dB, — %/0 |65|2ds} (5.5)

is a well-defined continuous martingale and there exists a measure @ equivalent to P on Fp with

dQ
|, =6
. ; (5.6)
and Bt:Bt—/ 0, ds
0
is a Brownian motion under @. Then
dZy = diag(7}, ..., ZKYa(e7 pdt + dBy) = diag(Z}, ..., ZK)o dB, (5.7)

Given a contingent claim X in L'(Fr, @), we can use the martingale representation theorem [7, TV.36.5]
to represent

t
Vi:=Eq(BrX | F) by =0 —|—/ H,dB, (0<t<T) (5.8)
0

where m9 = Eg(frX) and fOT |H |?ds < oo a.s. We want to set ¢ := (diag(Z)a)_lTH and then have,
by (5.8),

1
Vi = mg +/ ¢s~dZs (59)
0

but we have to pay attention to some technicalities.
As fot |H|?ds and Z; are continuous in ¢, we can assume, by localisation, that fOT |H|?ds, Z; and
77" are all bounded. We now need a

Technical Lemma. If B is BM(RX) and A, is a previsible matrix-valued process such that A; and
A7l are bounded and ¢; € Ls(B') where Ly(X) = {previsible G : IE(fOT G2?d[X]s) < co}. Then
(AT @); € La(a;j - BY), for all i, j, and where A~! = (a;;), and also AT¢-(A™1-B)=¢- B.

Proof
For ¢ bounded, we see that

(aridr) - (@;; - BY) = (apiaij¢r) - B = ¢; - B = ¢ - B (5.10)

Using summation convention, and [7, TV.27.6]. Otherwise
T ' T ' T
/0 (AT¢); dla; - B'] :/0 (arior)’az; d[B’] < KZ/O Sragag; dt
J

which has finite expectation as A and A~! are bounded and ¢; € Lo(B?). So (AT¢); € Lo(ai; -BJ) (no
sum), hence (AT ¢); € La((A™! - B);). So the swap used in (5.10) can be repeated using the density of
bounded previsible processes in Ly(B), and the La-continuity of ¢ +— AT ¢. O

Setting A to be (diag(Z)c)~" which is bounded with bounded inverse, and as H is in Ls(B), the
lemma tells us that ¢ is in Ly(7), and that (5.9) does hold. -
Set ¢9 = Vi — ¢4.74, then if we extend Z to Z = (1,7) (= 35), ¢ = (¢°, ¢), then

t
Vi = 4.7 = 7o +/ ¢5.d 7, (5.11)
0

So ¢ is in some sense ‘discount self-financing’. We want rather that it is really self-financing, that is
— — — — t — —
¢¢4.51 = ¢9.50 —|—/ ¢s.dSs (5.12)
0
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Proof We use integration by parts, remembering that S is of finite variation.

d(6.58) = d(6.(S° 7)) = d(5°(¢.7)) = dS°(¢.7) + S° d(6.7) + d[S°, 6.7]
=dS°(¢.7)+ S%(¢.dZ)+0 by (5.11)
=¢.(Z2dS° +S°d7 +d[S°, 7))
=¢.d(S°7) = $.dS

O

So ¢ manufactures claim X by trading in the stocks and the bond. Given initial investment V, no
inflows are needed and no outflows are produced until time 7. The value of the claim is thus

70 = Eq(frX) (5.13)

assuming there are no arbitrage opportunities.

For the case X = (Sh—c)T, or any other tractable example, we can perform the requisite integration,
as we know P, the Wiener measure, given, say, yg, og as in note (3) (Black-Scholes), and dQ/dP is defined
in (5.5,5.6). A messy calculation does eventually show that Vo = C(S3,0) in the notation of section 4.

We see that the drift of the log price process is removed by the change of measure (along with
the interest rate discount) showing mathematically why it is absent from the Black-Scholes formula.
Economically one could argue that there will be a link between p, p and o to ensure long-term market
equilibrium. For instance, if o were small, we would expect p to be close to p. So the formula depends
on g, but only through the interrelationships between the economic variables.

Note we can value all contingent claims X which are @-integrable, but we would be interested in
a condition involving the more ‘concrete’ given measure P. The following proposition supplies and a
sufficient condition.

Proposition. (Rogers [6]) If X € L'Y(Fp,P) then X € L'(Fr,Q), and is thus an attainable contingent
claim.

We use the fact that & = dQ/dP is L1(P) integrable for all ¢ < oo, although it is not essentially bounded.

Because
d T 17
% = exp {/0 (—o~'p)dB; — 5/() |0_1,u|2dt}

and o~ 'y is bounded. Thus

dQ dQ .
Eg(|X|)=E X| =) <||X|lize || —= Hold
o) =Ep (X152 ) <xlhec |53, e
Whence result. O
6 Continuous Case — Further Generalisations

We have seen that the continuous case, under the strong distributional assumption about the price
processes, 1s quite easily managed. as we generalise the underlying distribution the situation becomes
more complicated, and the assumptions become less economical and more on account of mathematical
tractability.

Harrison and Pliska [3 §3] attempt a very general framework of a probability space (2, F,P) with
semimartingale price process S. Drawing on their discrete case theorem that there can be no arbitrage if
and only if there exists a measure under which the discounted price process is a martingale, they assume
there exists a measure @ on (Q, F) equivalent to P, under which 3S is a Q-martingale. (3, = 1/S?
as usual.) The problems, which they freely admit, arise when trying to define what is and what is not
a trading strategy. Their definition is not economically intuitive and is sensitive to equivalent changes
in the chosen measure Q. (In the Brownian case of section 5, @ is unique, so these questions are less
disconcerting.)

Nevertheless, Harrison and Pliska’s approach is the most general reasonable attempt in the literature,
so 1t 1s described here in essence.



H-P Assumptions
(Q,F,{F : 0 <t < T} P)is a filtered probability space satisfying the usual conditions. The price
process S = (S, St ..., SK) is an RE+1_valued, strictly positive adapted R-process (right continuous
with left limits). Assume that the bond process S° is continuous and of finite variation. As usual
B =1/5Y and S§ = 1.
Also assume that there exists a measure P* equivalent to P under which
7 :=p(s°, 5", ..., 8%) is a RA+!_martingale under P*

This is simply a formal analogue of their discrete result that there are no arbitrage opportunities if and
only if such a maringale measure exists. (Though we have seen that is true for the case in section 5.)
Then we define

. 3
(LN7) = {previsible H=(H'. . HY): (/ (HE)? d[Zk]s) is P* locally integrable} (6.1)
0

(Note on notation: Harrison and Pliska use the notation £(7), but this notation is more in tune with

the system of Jacod [5], which we shall be using later.) Their assumptions for a trading strategy

6= (4" ...,¢0%) to be admissible are:

(1) ¢° adapted and (¢',...,¢%) € £L1(Z) (Does depend on choice of P*.)

(2) V*(¢) > 0, where V*(¢) := 9.7

(3) Vj satisfies the SDE dV} = ¢.d7

(4) V; is a P*-martingale.

Notes on admissibility

(1) Allows the stochastic integral [ ¢.dZ to be defined.

(2) An economic assumption.

(3) Makes sense as a self-financing condition for similar reasons as we saw in (5.12), except processes
may not be continuous.

as AV} = ¢;.AZy, so
ViL(¢) = Vi (¢) — AV (9) = 6124 — 1. N7y = 4.7
The following completes the argument:
dVy = d(S°V*), = dS) V" + S dVy +d[S°, V™),
= ¢t(d(SOZ)t) = ¢t.dSt
That is to say,
t
Vi(é) = V(@) + [ 6..d5, (6.3)
0

That is that ¢ is self-financing in the discrete sense, that the changes in the value of the portfolio
are due only to the changes in the prices of the securities, and not the outflow or inflow of funds.
We can show the reverse implication, and hence deduce that condition (3) is independent of the
measure P*

(4) V*(¢) is a local martingale but condition (4) is also dependent on P*.

Then we say an element X of L'(Q, Fr)T is attainable if there exists an admissible ¢ such that

Vr(¢)=X and then V5(¢) = prX (6.4)
And as V*(¢) is a P*-martingale, then
Vi(e)=E(Vr(e) | 7)) =B (Br X | F2) (6.5)
Thus
7= Vi () = E*(BrX) = Vo(9) (6.6)

as Fp is trivial. And in a viable market (no arbitrage), = is the only price at which security X should
be traded at time 0, as X can be manufactured with trading strategy ¢ at time 0 at cost of # = V5(¢).
Note if there also another strategy ¢ such that Vp(y) = X, then Vi*(¢) = E*(Br X | Ft) = Vi*(¢), so
the value of portfolio v equals that of ¢ at all times.

Given X such that g7 X is P*-integrable, set

Vi =E"(frX | F) (6.7)

taking a modification to be an R-process. Then V;* is a positive (P*) martingale, and we see:
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Proposition. X is attainable if and only if V* can be written
¢
Ve =V 4 / H,.d7, (6.8)
0

for some H € (L1(7)
Proof

‘Only if” is obvious.

Conversely, suppose there is some such representation of V*. Then set ¢! = V;* — ZZK:1 ¢1 7! so that
#° is adapted (HP err here), and V*(¢) = ¢+.7; = V;* + Zlel #IAZE = V7 by (6.8). Thus ¢ satisfies
the admissibility conditions (1)—(4) with

Vi =E(BrX | Fr) = frX, so Vp(g)=X

O

So completeness (attainability of all integrable Gr X) of the market depends on the representation
(6.8) of the martingale V*. Tn section 5, we used the martingale representation theorem and properties
of the price process to achieve this.

Harrison and Pliska in their follow-up note [4] show:

Theorem. The following are equivalent:

(1) P* is unique.

(2) every P* martingale M can be written M = My + H - Z for some H in (LY(7).
(3) the market model is complete under P*.

Proof

(2) implies (3) by (6.8)

(3) implies (2) given (6.8) and the observation that any martingale can be written as the difference of
positive martingales.
To show that (2) is equivalent to (1). Tn the language of Jacod [5], we set

M (Z) = { probability measures P on (€2, F) such that 7 is a P-martingale }
HY(P)={M : M is a P martingale such that A} is P-integrable }

T 3
LY(7Z) = { H : H previsible and (/ Hfz d[Zk]s) integrable }
0

(Here M} :=sup{ |M;|:0 < s <t}.) Then Jacod shows [5, 11.2-11.4] that the following are equivalent
for any P € M(7):

(a) P € M.(7), the set of extreme points of M (7).

(by H{(P)={H-Z:He LY2)}.

(¢) Q€ M(Z) and @ < P then @ = P.

Condition (b) asserts that all ‘well-behaved’” M are representable by equally ‘well-behaved’ previsible
processes. Localisation allows us to make (b) equivalent to condition (2) of the theorem.

Lemma A. Condition (b) holds for P* if and only if condition (2) holds.

Proof of lemma A
Suppose (2) holds. Remember the generalised Davis, Burkhdlder, Gundy inequality [5, 2.34], that for

1 < p < oo there exist constants cp, c;,, such that for all local martingales M,
1My < epll [M]E ], < epl[MZlp (6.9)
Then if M € HY(P*), (2) gives M = H - Z for H previsible and [H - Z]% locally integrable. But

1 el
ITH - Z]7|lh < jIIM?Ill <0
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SoHisin LY(Z)and M e {H-Z:H € LY(Z)}.
IfMe{H-Z:HelLY(Z)} then M is a local martingale with M} integrable by (6.9), so M is a
martingale, hence (b) holds.

Conversely, if M is a P* martingale, define a sequence of stopping times T, by T,, = inf{¢ : My > n}.
Then (MT»)% < |M7| + n which is integrable. So M7= is in L'(P*), hence MT» = H™ - Z for some H
in L1(7). Pasting together M = H - Z, and H is locally L'(7), that is, is in £L}(Z), because H = H,
for t < T, (w). O
Now back to showing (2) <= (1). Suppose (2) holds for P*, then (b) and hence (c) hold for P*. Hence
if @ is a measure equivalent to P*, under which 7 is a martingale, then @ € M(7) and @ < P* so
@ = P*. Hence P* is unique, and so (1) holds.

Conversely, suppose (1) holds and (2) does not. Then neither (a) nor (b) holds either for P*. So P* is
not extreme in M (7). Thus

Pr=aQi+(1—a)Qx Q1,Q:€M(Z) 0<a<l (6.10)

Hence @1 < éP*. We need the following result:

Lemma B. If 7 is a non-negative P martingale and ) a measure such that Q < kP for some constant
k, and 7 is a Q-local martingale, then 7 is a (J-martingale.
Proof of lemma B

Fatou’s lemma shows that Z is a Q-supermartingale, so we only have to show that Eq(Z;) = Z; for all
t to get the result. Fix ¢, and let C = { Zp : T stopping time < t}. We know that C is P-uniformly
integrable as 7 is a P-martingale. But

sup/ |X|dQ§ksup/ | X|dP — 0 as a — 0o
xec J|X|>a xec J|X|>a

So C 1s @Q-uniformly integrable. Now take the sequence of stopping times 7;, which reduce 7 for @, that
is T, 1 oo and Z7= is a Q-martingale. Then ZtT" — 73 and {ZtT" = Ziar, } is Q-uniformly integrable.

Thus Zo = Eq(Z]™) — Eq(Z) O
So by Lemma B, 7 is a Q;-martingale, and also a @a-martingale. So 7 is a (5Q1 4+ (1 — 3)@Q2)-martingale
for 0 < B < 1. But (8Q1 + (1 — 5)Q=2) is equivalent to P*, contradicting the uniqueness of P*. O

So a market model could be said to be good (both viable and complete) if there exists only one
‘martingale measure’ P*, then all contingent claims X are valued by

™ =E"(frX) (6.11)

7 Other Futures Contracts

The European call option which we have analysed before is only one in a wide class of futures
contracts, agreements whose outcome depends on a (stochastic) future. The agreement in this case is
that the buyer of the option has the right, but not the obligation, to buy a share in the stock S', at a
given price ¢, at a given future date 7. Thus the buyer has a control theory problem of a very simple
type. At expiration, his net gain due to exercising the option or not is:

. Sk —e¢ if option exercised
= . . 1
gam { 0 if option lapses (71

Clearly the optimal strategy is to exercise the option if and only if SL > ¢, then the gain is
(St — )T, (7.2)

which 1s the familiar random variable associated with the option, and which we used in our valuation
formulae. The reason for writing out the obvious in a longwinded fashion is that for some contracts the
optimisation of strategy is non-trivial.

For instance, the American call option gives the right to buy the stock at a given price at any
time between now and the expiration date 7. Dynamic stochastic programming indicates that the best

12



strategy is to exercise the option at time ¢ if S} > ¢; where (¢; : 0 <t < T') is some deterministic process.
In the Black-Scholes model, we had C(S},t) as the price of a European call option at time ¢. We saw
that % < 0 and thus deduce, as Black-Scholes themselves remark [1], that

C(SHt)y>C(SHT)=(S} =)t >S —¢  (t<T) (7.3)

Which means, the European option is worth more than the gain due to buying the stock for price ¢
now. We deduce that as an American call must be at least as good as a European call, the value of
an American call at time ¢ < T must be strictly greater than the gain realised through exercising the
option at that moment. So the optimal strategy is to wait until expiration and exercise the option then
if and only if ST > ¢ as before. That is, the best thing to do with an American call is to pretend that it
is a European call, so they share the common value C/(S},0) at time 0.

In arbitrage language, suppose we sell Mr Silly an American call on stock S* at time 0 for C(S§, 0),
which we use the buy the portfolio which will produce the European call (S% — ¢)* at time 7. Then,
were Mr Silly to exercise his option at some time ¢t < T, we would have to give him a share of the stock
at a cost of S} — ¢ to us. However the value of the portfolio at that time would be C'(S},¢) which, by
(7.3) is greater than our cost. The point here is that although we did not plan to manufacture S} — ¢,
we can still produce it and even have a little profit left over as Mr Silly’s decision was not optimal.

Another standard contract is the Furopean put option, under which the buyer of the option has the
right (but not the obligation) to sell a share to the option-seller at time T for a fixed price ¢. By a
similar argument to the European call (more basic control theory), its value at time 7 is seen to be

(Sh—e) (7.4)

We value the option before time 7" with the following trick, due to Black-Scholes. Buy a call option and
sell a put option, so the portfolio’s value at time T is

(S7—e)" = (Sp—¢)” =Sp —c (7.5)

This is easily manufactured by buying a share at time 0 and borrowing ce™"7 | so that at time 7' the
share is worth S} and the debt has incerased to c. This requires an initial investment of S} — ce”™T . So
if D(SE,0) is the value of the put option at time 0,

C(S5,0) — D(Sh,0) = S§ —ece™T (7.6)
Hence

D(z,t) =C(x,t)—z + ce="(T=1)

o (R ET 0N g Tt b= )T =0y (D
D(z,t) = —2d (— T 1 >—|—ce -1 <— ] >

D(z,t) — (x —¢)” as t — T, but not monotonically like C'(z,t) | (z — ¢)*. Crucially D(-,t) ¥ D(-,T),
as is the case for C'. This means that our previous argument does not apply to the American put option,
which gives the right to sell at any time up to 7. Thus the American put presents a difficult optimal
control problem. Suppose an American put should be the same price as a European put. Then buy one
and follow the strategy: behave as if holding a European put unless there is a time ¢ < T such that
D(S},t) < ¢ — S} (which happens with positive probability). Then overall the amount we get from the
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option-seller’s portfolio is at least as large as the European put cash stream, but is strictly greater with
positive probabilty. This is not viable for a long-term market. Thus we deduce that an American put is
worth strictly more than a European put.

The common contract, often referred to simply as a future, is an agreement between two agents
for one to buy from the other a unit of some stock or commodity at some given future date for a price
decided now. The future contract has no consideration on either side as this can be reflected in the
contract price. in the context of our model this contract is trivial,as the buyer’s gain at time 7" is simply

Sk —c

where S' is the commodity price process and ¢ is the contract price. The buyer manufactures the desired
amount by buying one share at cost S§ and borrowing ce™"7 as before. Thus the future price ¢ should
be fixed by

c=eTs) (7.8)

That is, ¢ is the current price of the commodity inflated by the known riskless interest rate. This would
imply that no futures trading should ever be done, as it is equivalent to simply buying the share now,
but for less money.

However, if the commodity is, say, spring potatoes and it is currently winter, the commodity is not
available and can only be traded in the ‘future’. Or if the commodity were fresh eggs and 7" were one year
in the future, one could not buy the eggs now which would honour the contract in a year’s time. Even
for financial securities (no holding costs or depreciation and always marketed), real-world transaction
costs translate our equation (7.8) into inequalities, merely constraining the range of the contract price.
Futures allow markets to gamble on future events which may not be already fully discounted in the
stock price, and also to deal in composite commodities, such as a FTSE future comprising 100 major UK
equities.

If the commodity has a deterministic storage cost, ¢;, at time ¢, then (assuming we can have a
negative holding of the commodity incurring negative storage costs) its future price must be:

T
= e’TSé —1—/ cre” T gy (7.9)
0

by construction of cash streams to pay storage costs. This is found in Duffie [2, Ex22.17].

An important application, described by Black-Scholes [1], is that of valuing corporate liabilities. If
a company issues bonds at a face value of ¢ to be redeemed at a fixed future time T, the shareholders
have the choice at time T either to honour the bonds and pay out ¢, or to let the company be wound up.
This is equivalent to the shareholders having an option on the value of the company with exercise price
c. Then if the company is worth S} in total at time ¢, the shares are worth C'(S},¢) (which is greater
than (S} — ¢)*, and the bonds are worth S} — C(S},t) which is less than c.

8 Conclusion

In the continuous case under the no arbitrage assumption we have considered several models. In the
simplest price diffusion process [Section 4] all contingent claims were attainable in the sense of being able
to be manufactured from basic securities so that their price is unique and calculable. A more general
higher-dimensional model [Section 5] provides a similar result. The most general approach of Section 6
shows that attainability is equivalent to a martingale representation problem which is generally solvable
if and only if the martingale measure for the discounted price process is unique. If this is not so, we have
seen that it even becomes difficult to define trading strategies, as the definitions depend on the measure
chosen.

We have assumed no dividend streams or cash calls relating to the stocks, but these could be
included in the general case by adding or subtracting the appropriate discontinuous jumps to the price
processes. The absence of transaction costs and taxation is less easily dealt with. The unboundedness
of the trading strategies has not been too bothersome as in both European call and put options the
amount of stock held or sold short is always between 0 and 1. Cash holdings or borrowings are less than
the discounted stock price which is L?-bounded in the simpler models.

The admissibility conditions for trading strategies unarguably owe more to mathematical expediency
than economic realism. The boundedness condition (¢L') is very weak, perhaps too weak for reality,
but the martingale assumption is on the strong side. A relaxed attitude is to view the complete perfect
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market of our model as an approximation to the real world of complex stochastic interaction, transaction
costs, and so forth. This attitude is boosted by the result in [1] showing that the results of the model
do come close to actual security prices in the market.
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