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”Fair is foul, and foul is fair” cry the witches in Macbeth warning against reliance on surface ap-
pearances, a recurring theme throughout the play. Taking the theme, here presented are some games,
which themseleves are not as fair as they might seem. The skill of the games lies not with its playing
but with the analysis and understanding of it, for we shall see that the outcome (even of random games)
was never in doubt – but foully predetermined.

BRUSSELS SPROUTS: A topological unfair game

Many readers will be familiar with the two player game of Sprouts, in which every move extends a
graph. (A graph is a set of points (vertices) joined together by non-intersecting lines (edges) on some
topological surface, such as a sheet of paper.) Starting with two unconnected vertices, a move consists
of drawing a new edge from one existing vertex to another, or even back to itself. The only restriction is
that no vertex can have more than three edges connected to it (counting double for looping back edges).
The new edge cannot cross itself or an existing edge. The move is completed by creating a new vertex
half-way along the new edge, splitting it into two edges, and leaving the new vertex with the capacity
for only one more edge to be connected to it. Players move alternately, and the winner is the last player
able to make a valid move. Figures 1 and 2 are two sample games:

Figure 1. Player 1 wins

Figure 2. Player 2 wins

By noting that the total capacity of the graph to accept new edges decreases by one with each move,
we see that the game must finish in five moves or less. The game can be made longer and more complex
by increasing the number of initial vertices. In fact the 2-sprout game is (fairly) easily analysed and an
intelligent player 2 will always win.

In Brussels Sprouts we replace the dot shaped vertices with cross-shaped ones (+), and insist that
all edges be attached to a free point of some cross. The new vertex placed on a new edge should have
one bar of the cross lying along the line, and a cross-point lying on either side. Figure 3 demonstrates a
game with one initial vertex:

Figure 3. Player 1 wins
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It is not immediately apparent that this does not just complicate the game further (it certainly
lasts longer), but in fact the analysis is greatly simplified. This is because the game is determined by
the faces of the graph. A face is a connected region of the space closed off from the other faces by the
edges of the graph. We also consider the region of space outside the graph as a face. Each face must
have at least one free cross-point in it, as the newest boundary edge of the face left a free cross-point
on each side. If there is a face with more than one free internal cross-point, then the game is not yet
over as one valid move is just to join them and split the face into two. So the game ends when there is
exactly one free cross-point in each face. Each move uses up two cross-points, but also creates two new
ones, leaving the total unchanged. Thus in the 2-sprout game, the game ends whenever there are 8 faces
of the graph. To discover when this is, we use Euler’s Formula:

V − E + F = 2, (1)

where V = number of vertices, E = number of edges, F = number of faces. (The precise conditions for
validity will be discussed later.) After n moves these values will be:

Vn = n+ 2 (each move adds a new vertex)

En = 2n (each move creates a new edge which splits into two)

thus Fn = n (by Euler’s formula) (2)

We know that the game ends when and only when Fn = 8. Thus (by Equation 2) the game always ends
after exactly 8 moves, and player 2 will always win, no matter what either player does during the game.
Try this for yourself now for a couple of games; you will always finish with 10 vertices and 8 faces.

Now if we start with m vertices, then:

Vn = n+m En = 2n Fn = 2−m+ n (3)

The game ends when Fn = 4m, that is when n = 5m− 2. So player 1 wins when m is odd, and player 2
wins when m is even. It is easy to confuse the unwary opponent by changing the parity of m if he or she
becomes suspicious of the order of play. The situation can be further complicated by having k players
instead of two, the winner being the last to make a valid move. Then player n will win if and only if:

n ≡ 5m− 2 (mod k) (4)

Luckily 5 is prime, so for any k not divisible by 5, there is a range of values of m to make any given
player the winner.

The coup de grâce is dealt by playing the game on more interesting toplogical spaces than flat paper,
such as the torus, Möbius strip, sphere, and so on. These surfaces are characterised topologically by
their number of ”handles” (genus), and their number of ”crosscaps”. The generalised Euler formula is:

V − E + F = 2− 2g − h, (5)

where g is the number of handles, and h the number of crosscaps (Möbius strips sewn into the surface).
The following remarks on the validity of this formula may safely be ignored.

* * * * *

Strictly Euler only applies to a graph embedded in a closed combinatorial surface. So the graph
must be connected, and all its faces simply connected.

(1) The final graph will be connected, as any two components would have a free cross-point in the outer
region, which could be joined as a next move.

(2) The knowing player must ensure by the end of the game that all the faces are simply connected,
as there is no guarantee that this need happen otherwise. In practice this means using all the
wrapovers and points of commonality discussed later. For example, on the torus there should be
edges going round the circles shown in figure 4.

Figure 4. Torus
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(3) It is certainly true for connected closed combinatorial surfaces, which are exactly the connected
compact 2-manifolds. And these, apart from the sphere, are either a sphere with g handles, or a
sphere with h crosscaps. (A sphere with g handles and h crosscaps is equivalent to one with 2g+ h
crosscaps, g, h 6= 0.)

Euler is also valid for C (the complex plane), its open connected subsets, cylinders, and many other
two dimensional surfaces, as they can all be mapped onto the 2-sphere for which Euler is valid. Table 1
describes some ”common” surfaces.

* * * * *

Surface Picture Representation g, h

C-plane, sphere, etc. sheet of paper 0, 0

Möbius strip
square with one pair of oppo-
site sides reversely identified

0, 1

Torus
square with opposite sides
identified

1, 0

Double torus
octogon formed by joining
two tori

2, 0

Table 1. Surface Summary

So at the end of the game:
n ≡ 5m+ h+ 2g − 2 (mod k) (6)

With three degrees of freedom (m, g, h), a wise huckster could keep opposition confusion going for an
impressive amount of time playing with twisted sprouts.

NIM - unfair in binary

Nim has been understood since Charles Bouton’s paper of 1901, so there is nothing new in this
account, which is included for completeness and as an illustration.

In Nim there are a number of rows, each with a number of counters along it. A traditional starting
pattern is to have n counters in the nth row (figure 5), but this does not matter much.

•
• •
• • •
• • • •
• • • • •

Figure 5. Nim start position

A move is simply to choose a row, and to remove from it as many counters as desired. The winner
is the player who removes the last counter. There is a suprisingly simple function of the position which
reveals which player can win.

Many will know the logical binary operators AND (∧) and OR (∨), perhaps fewer the operation
EOR (⊻) (or XOR) - the exclusive-OR. Its truth table is shown in table 2.
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Table 2. Exclusive-OR
a b a ⊻ b
0 0 0
0 1 1
1 0 1
1 1 0

We can extend EOR (and the other operations) from just acting on {0, 1} to acting on all non-
negative integers, via their binary expansions. That is:

If a =

∞
∑

n=0

an2
n b =

∞
∑

n=0

bn2
n, then a ⊻ b =

∞
∑

n=0

(an ⊻ bn)2
n (7)

(In fact ({0, 1},⊻,∧) is the field F2, and we create the commutative product ring ({0, 1}N,⊻,∧) under
componentwise operations, the non-negative integers being a subring. So ({0, 1}N,⊻) is an abelian group
of elements of order 2.)

Returning to Nim, if we represent the state of the game as r1, r2, . . . where rn is the number of
counters left in the nth row, then we consider R = r1 ⊻ r2 ⊻ . . . What does it mean when R = 0 ?

(i) There are at least two non-empty rows, so the player about to play is not just about to win.

(ii) Once that player has moved, R will no longer be zero. For if he reduces row n from rn to r′n counters,
then R changes to R′:

R′ = R ⊻ (rn ⊻ r′n) = rn ⊻ r′n 6= 0 (8)

(iii) We shall prove shortly that whatever the move was, there is a move by the other player which
returns R to zero.

So if player 1, say, can arrange for R to be 0 after his move, then player 2 cannot win with his next
move and player 1 can return R to 0. Thus player 2 can never win, so player 1 must win (as the game
always ends).

Let us quickly see how to return R to 0:

Let k be the position of the leading ‘1’ in the binary expansion of R′ (non-zero). Then there exists an
n such that rn has its kth bit set, as R′ indicates that there is an odd number of such n. Set r′n to
be R′

⊻ rn, then the bits of r′n higher than the kth are unchanged as R′ is zero there, and the kth bit
itself is zero. Thus r′n < rn, so the move to make is to remove rn − r′n counters from the nth row, as
R′′ = R′

⊻ (rn ⊻ r′n) = R′
⊻R′ = 0.

The above shows how to make R equal to zero given any position in which it is not. So a knowl-
edgeable player 1, if the initial value of R is non-zero, will win whatever player 2 does. Similarly a
knowledgeable player 2 will win if R is initially zero. If one of the players is unknowledgeable he or she
will probably leave R in a non-zero state after some move, enabling the other to zero R and take the
advantage.

We see that the game is determined by the initial value of R, R0. For a starting position of n rows
with i counters in the ith row, R0 = ⊻

n
i=1

i. Now (2m) ⊻ (2m+ 1) = 1 so we deduce:

R0 =











1 if n ≡ 1 mod 4
n+ 1 if n ≡ 2 mod 4
0 if n ≡ 3 mod 4
n if n ≡ 4 mod 4

(9)

Player 2 can win when 4 divides (n− 3), player 1 otherwise.

In a sense both Nim and Brussels Sprouts are no more unfair than any other discrete (turn-about)
two-player games, such as chess. For, as long as the game always ends, there will be a strategy for one
of the players which gives victory no matter what the other does. In Brussels Sprouts we saw that the
winner is determined by the initial number of vertices and the winning strategy is arbitrary, as it does
not matter at all. In Nim the position is characterised by the value of R, and the simple winning strategy
is described above. In chess, say, there are 3 outcomes (win, lose, or draw) yet an optimal strategy for
either black or white does exist. (History suggests that it could be white which is always able to make at
least a draw, but it is an open question.) However it is doubtful whether it is governed by some simple
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rule or formula and the computation involved in calculating it (and it is computable in a technical sense)
would be substantial - there are of the order of 1050 positions.

DOUBLE OR QUITS - walks around random examples

Now we consider the result of a random game to be the (real-valued) net gain X of total rewards or
winnings less any stake, penalty or cost due to playing the game. If the game is voluntary, with gain Y
due to not playing the game, we shall consider X − Y , the relative gain of playing the game. Knowing
the distribution of the net gain X , we want to know if the game is worth playing, or at least fair. Two
simple alternative questions to ask are:

Is P(X ≥ 0) ≥
1

2
? Is E(X) ≥ 0 ? (10)

(We are assuming that X is an integrable random variable on some probability space.) These distinct
conditions are often confused. For example, even Adam Smith asserts of a lottery that:

there is not, however, a more certain proposition in mathematics than that the more

tickets you adventure upon, the more likely you are to be a loser.

Adam Smith, Wealth of Nations, I.x.i

Consider a lottery of 1000 tickets each at unit cost, with only one prize of 900. Buying n tickets,
with a resultant net gain of Xn, we see that:

P(Xn ≥ 0) =

{

n
1000

if 1 ≤ n ≤ 900
0 if 900 < n ≤ 1000

(11)

E(Xn) = −
n

10
(12)

So the probability of being a net winner increases with the number of tickets bought (up to a limit),
but the expected gain decreases. As no-one ever made a living by winning lotteries, one might assume
that the expectation is the indicator that the wise should use. One could further ask why so many
people bet on horse races, play slot machines, and enter the football pools; all activities with negative
expectations of gain. Prof Blimp would inform you that these people have no head for such things and
have conquered rationality by a combination of greed and the natural human belief in one’s own good
fortune. His sociology colleague Dr Larebil suggests that what is being sold is not just the chance of
a fortune but the opportunity to dream and to hope about winning it. One former Chancellor of the
Exchequer clearly agrees:

Lawson: Well, the sum you might win is absolutely enormous

Question: But the odds are enormous too.

Lawson: Yes, I know, but it’s worth doing just for the money, just for the possibility

of getting this enormous sum.

William Keegan, Mr Lawson’s Gamble, Hodder and Stoughton 1989

This dream price can be the whole cost, as in Big Brother’s lottery for the proles in Orwell’s 1984,
which never really awarded the large prizes that it claimed to. Big Sister’s premium bonds at least
satisfy P(X ≥ 0) = 1 and E(X) > 0 for a unit stake over one year. In fact E(X) = 0.07 (7% interest
rate), which implies a negative relative gain, when compared with investing in a bank or building society
with E(X) nearer 0.09 (or 9% net interest).

However Prof Blimp takes care each year to renew the insurance of his house against fire, a game
where he is certain to lose his stake (premium) each year for no net gain, that is X = −1 a.s. However,
if he did not play the game, that is if he failed to insure his house, his gain Y , would be 0 with a high
probability, but would be minus the value of his house with the small (but positive) probability that
he leaves the gas on, or some other conflagrationary accident occurs. So his relative gain X − Y is
probably slightly negative, but has a chance of being very large and positive. As the insurance company
has to make provision for overheads and profits, the premium will be more than the value of the house
multiplied by the probability of its incineration: E(X − Y ) < 0. We now see that the relative gain of
playing the football pools has exactly the same stochastic structure as the relative gain of insuring a
house.

I am not however advocating either the purchase of 1000 pools coupons each week, nor the can-
cellation of insurance policies, and neither will Eureka accept any liability for any losses incurred as a
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result of such action—for there is a difference between the two cases. In the former, you pay to have a
tall but probability-thin spike added to your ‘gain-space’, in the latter you pay to have a similar, but
negative, spike removed. In one the maximum gain is made much greater, in the other the minimum
gain is made much greater (the maximum loss is made much less). The examples are here to show that,
in real situations, even the stochastic structure of the gain random variable may not be enough to decide
the question.

To conclude, I present a general case where the probability of success and the expectation of reward
differ in a staggeringly paradoxical fashion.

Consider a sequence of random win/lose games agaainst a ‘house’ or bank. The player only chooses
the stake which linearly scales the gains and losses of the game. The stake can be zero (but not negative),
allowing the player to stop playing at any time, by setting the stake to be zero from then on. The stake
can depend on the results of previous games, but cannot depend on the results of games yet to come—the
bank does not allow betting after the event. The games are probabilistically independent, with the nth

game yielding probability pn of success with a reward αn > 1 for a unit stake. So the gain Xn, of playing
game n is:

Xn =

{

αn − 1 with probability pn (0 < pn < 1)
−1 with probability qn = 1− pn

and Mn =

n
∑

r=1

CrXr (13)

is the total gain so far, where Cn (≥ 0) is the stake placed on game n. The Borel-Cantelli Lemmas imply
that the probability of the player having infinitely many victories is either 0 or 1, depending on whether
the sum

∑

pn converges or diverges. Unbelievable paradoxes arise in either case.

Case 1.
∑

pn < ∞, certain to have only finitely many victories.

Suppose αn = 2

pn

, then E(Xn) = 1, and we choose to gamble a unit stake each turn, Cn = 1, then
we see:

Mn → −∞ with probability 1 but E(Mn) → +∞

Case 2.
∑

pn = ∞, certain to have infinitely many victories.

The gambler can choose each turn to stake exactly the amount needed to restore all past losses and
give a small profit if victorious in the game:

Cn =
n−Mn−1

αn − 1
so Mn = n if successful.

This results in a fortune strictly increasing from one victory to the next, and if the gambler chooses
to stop after the kth victory (and there will be a kth victory with probability 1), then he finishes with
a positive net gain. A slightly simpler case is Cn = (N − Mn−1)/(αn − 1) which stops after the first
victory with a profit of N , for arbitrary ‘greed value’ N . This is a generalisation of the stake doubling
rule commonly associated with roulette, under which the initial bet is 1, which is doubled after every
losing spin of the wheel, so that the eventual victory yields a net gain of 1. In this case pn = qn = 1

2 ,
αn = 2, and Cn = 2n−1 until victory. By picking

αn =
pn + 1

2pn
we get E(Xn) = − 1

2qn, so E(Mn) < 0.

So we have a negative expectation of Mn, yet Mn itself tends to some positive value N with probability
one.

In both these cases, the limiting value of Mn gives the true worth of playing the game, and the
expectations are misleading. The games are not however as good for the theoretical winner as might be
supposed. In the former, where the bank wins, the amount “invested” in paying out to the player on his
finite number of wins has infinite expectation, so the bank needs deep pockets. Alternatively if only a
score is being kept, the real winner is the player who does not keep score, as an infinite amount of paper
will have to be bought to record it.

In the latter game, in the simple stop-after-first-win case, the expected losses before the first win
can have infinite expectation. (If αn = 1/pn, then E(Mn) = 0 and E(|Mn|) ≤ N .) The only snag now
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is that although P(T∞) = 1, where T is the time of the first victory, it may be that E(T ) = ∞, that is
you should expect an infinitely long wait before success. For example,

pn =
1

n+ 1
, P(T ≥ n) =

1

n
, E(T ) =

∑

n≥1

P(T ≥ n) = ∞.
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