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Chapter Zero
Introduction

A tale told by an idiot,

Full of sound and fury,

Signifying nothing.

Shakespeare, Macbeth

1
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0.1 Introduction

Probability theory, from its very beginnings, has carried a strong whiff of determinism.

Even Bernoulli [8] in 1713 thought that just as backward peoples still gambled on

eclipses that science could now predict, some day gambling on coins and dice would

seem equally primitive once mechanics was perfected (quoted in Gigerenzer et al. [20]).

Nowadays randomness is accepted in its own right as a natural phenomenon, arising in

a wide class of cases from the emergent uncertainty of largescale deterministic systems

to the quantum uncertainty of the very small. However, the feeling that randomness is

untidy and that (almost) certain results are better ones lingers on. Indeed, sometimes,

the theory of random events resembles Wittgenstein’s philosophical ladder — we

climb up it only to throw it away, to be left with a better view of the deterministic

world.

One of the earliest, and still popular, methods of removing uncertainty from

some random quantities was to take an average of them, in the hope that the stochastic

fluctuations would cancel out. The simplest average is of course the sample mean,

which weights each of the samples equally. We shall call averages of this type Cesàro

averages. These averages are the subject of the Laws of Large Numbers, the Central

Limit Theorem, and LargeDeviation results which give us certainty (almost sure lim

its), distributional information (asymptotic normality), and extreme value likelihoods.

The importance of these truths in Statistics and elsewhere can be measured by the

amount of effort expended on obtaining, generalizing and developing these results.

If the samples all have the same status, then the Cesàro average is the natural

one, but if the symmetry between them is broken, then it is less so. We might think

of our samples as being a timeseries of values from some stochastic process. In, say,

an economic context a value now is worth more than the same (nominal) value at a

later time. Similarly in control theory, current events are privileged over discounted

future events. Mathematically, we would take an average where the weights are not

equal but depend on the time position of the sample. For exponential or geometric

discounting it is natural to call such a sum the Abel average.

In this work, we find analogues of existing theorems for both Abel and more
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general averages, as well as completely new results about averages. Although much

of the work has the advantageous property that it holds true for a general average and

process whenever proved true for the Cesàro average, other parts are derived from

different considerations using a fresh approach. In the latter case it has proved of

considerable technical ease to work in the context of finite state Markov chains. It is

clear what more general corresponding results would be, but we shall not attempt to

prove them here.

In the last two Chapters, the focus shifts from time discounted integrals of the

local time to more basic questions concerning the existence and continuity of the local

times themselves for some particular Markov processes. Although the general theory

has been much studied and understood, we will find straightforward methods where

possible, as well as working within the existing framework. Chapter Five is concerned

with the construction and analysis of Markov chains on the infinite binary tree, with

reflection off the end of each infinite branch. We discover exact conditions for the

regularity of boundary points, as well as for the existence of a jointly continuous

version of the local time. This allows the construction of a Markov process on the

Cantor set, which is quite different from the recently muchstudied Brownian motion

on a fractal type of process.

Finally, the ultimate Chapter creates a continuous space analogue of the tree

process. In twodimensions, a typical diffusion, such as Brownian motion in the

plane, never revisits a point, so it does not have a local time. In Chapter Six we shall

construct the local times of some particular twodimensional diffusions on a special

onedimensional subspace, and show that they are jointly continuous in both time and

space under some exact conditions. Conditions for recurrence of the process are also

derived.
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0.2 Outline

Our basic object of study will be the average at discount rate λ of the occupation

measure of a stochastic process X , Aλ, where

Aλ := λ

∫ ∞

0

m(λt)δX(t) dt.

Here Aλ is an element of the space of probability measures on the state space of X ,

and m, the discount function, is a density on R
+. The Cesàro case is when m is the

indicator function of [0, 1], and the Abel case is when m(t) is e−t. For X a diffusion,

we generally abuse notation and write Aλ for Aλ(R
+), but for X a finite state Markov

chain, we continue to treat Aλ as a measure (a point on a simplex).

Our principal questions concern the search for expressions for the following:

• Exact distribution of Aλ

• Symmetry characterizations of the distribution of Aλ

• Asymptotics of the distribution of Aλ (for fixed λ)

• PDE’s governing the density of Aλ

• Strong Law and Central Limit Theorem for Aλ (as λ ↓ 0)

• Large Deviation Principle for Aλ (as λ ↓ 0)

• Finer density expansions for Aλ (as λ ↓ 0)

Where we seek answers for various classes of discount (Cesàro, Abel, general) and for

various processes (Brownian motion, OrnsteinUhlenbeck, Markov chain, general).

Some of these questions have been studied before, especially in the Cesàro cases.

For instance, we know that the Cesàro average of a Brownian motion has the arc

sine distribution (Lévy), and that of an OrnsteinUhlenbeck process has the uniform

distribution. Both these distributions are members of the beta family of distributions,

and we shall see further such examples in the Abel cases (if only because of the paucity

of analytic distributions on [0, 1] for exact solutions to belong to).

The symmetric characterizations (for the Abel case only) not only provide speedy

verification of the above results, but also give the distribution asymptotics through
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some careful analysis and use of Tauberian theorems. The Strong Law and the Central

Limit Theorem follow immediately from existing theorems and other results derived

here.

Of the great amount of recent work in the theory of largedeviations ever since

Donsker and Varadhan [16], many notable papers, such as de Acosta [1] have concen

trated purely on the discretetime Cesàro average. Others, including Nummelin [29]

and Jain [23], have looked at functions of the form t−1
∫ t

0
f(Xs) ds, which can be made

to fit our framework by taking X to be the Markovian spacetime process associated

with the original process. However, this approach leads to awkwardness in the condi

tions to be satisfied and the expressions derived, and does not lead to the exact forms

which we will derive ourselves (albeit in a much more restricted case). Nevertheless,

as remarked above, if the largedeviation property holds for the Cesàro case then we

can extend it using our theorems to the other cases, so to our extend our own results

to, say, infinite state Markov chains, the paper of Chen and Lu [14] and others will

surely be useful.

0.3 Summary of Results

Let us give a flavour of the results which will be obtained.

Theorem (LargeDeviations). Suppose that X is an irreducible Markov chain on a finite

statespace S, with Qmatrix Q, and Ct is the Cesàro average defined as

Ct :=
1

t

∫ t

0

δXs
ds,

taking values in M1(S), the space of probability measures on S. Then the largedeviation

property holds for Ct with rate function I defined on M1(S):

lim sup
t→∞

t−1 logP(Ct ∈ F ) 6 − inf
x∈F

I(x),

lim inf
t→∞

t−1 logP(Ct ∈ G) > − inf
x∈G

I(x),

for F and G respectively closed and open subsets of M1(S). The function I is given by the

expression

I(x) = sup
h∈(R+)S

−
∑

i,j∈S

xi
qijhj
hi

.
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Further, let m be any density on [0,∞) and Aλ be defined as the average

Aλ := λ

∫ ∞

0

m(λt)δXt
dt,

also taking values in M1(S). Then the largedeviation property holds for Aλ as λ goes to 0

with rate function K given by

K(x) = sup
v∈RS

(

〈v, x〉 −
∫ ∞

0

sup
y∈M1(S)

(

〈m(t)v, y〉 − I(y)
)

dt

)

.

Or more naturally,

K∗(v) =

∫ ∞

0

I∗(m(t)v) dt,

where ∗ denotes convex conjugation (Legendre transformation).

Theorem (Central Limit). Under the same conditions, if m is of bounded variation and π is

the invariant distribution of X , then

Aλ − π√
λ

D→ N(0, H−1
K (π)), as λ ↓ 0,

where HK is the Hessian of K on M1(S).

Theorem (Density asymptotics). Under the same conditions, and if fλ
i is the density ofAλ

on M1(S), starting X in state i, then

fλ
i (x)

w∼ zi(x)e−K(x)/λ(2πλ)−(n−1)/2
(

detHK(x)
)

1
2 , as λ ↓ 0,

where z(x) is the (unique) positive eigenvector ofQ+diag(m0∇K(x)), and where ‘
w∼’ means

that the ratio of the two sides tends weakly to 1 (in the sense of Corollary 4.17).

Theorem (Distribution asymptotics). Let X be a stochastic process on R and let Fλ be the

distribution of the Abel average Aλ

Aλ := λ

∫ ∞

0

e−λtIR+(Xt) dt.

(1) If X is Brownian motion, then Fλ is independent of λ and

Fλ(x) ∼
2
√
x

π
√

log(1/x)
as x ↓ 0.
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(2) IfX is the recurrent OrnsteinUhlenbeck process generated by the SDE dX = dB− 1
2γX dt,

and X0 = 0, then

Fλ(x) ≈ x
1
2 (1+γ/λ), as x ↓ 0,

where f(x) ≈ g(x) means that f/g tends to a positive limit as x goes to 0.

(3) If X is a symmetrisable Markov chain then, replacing IR+ by I{i} in the definition of Aλ,

we have that

Fλ(x) ≈ xγ/λ, as x ↓ 0,

where γ is the minimal positive eigenvalue of the submatrix of (−Q) formed by deleting the ith

row and ith column.

There are nonetheless many questions unanswered. It is clear that there should

be analogues of the finite state Markov chain results not only for countable state

processes but also for continuous space ones. In the economics context especially one

would expect the discount shape itself to be random and possibly not independent of

the process itself.

The two local time theorems about the discrete and continuous space cases

respectively can be summarised as follows. Fuller details of their construction and

behaviour can be found in Chapters Five and Six.

Theorem (Binary Tree process). There is a Markov chain X on the binary tree which

makes upjumps from level n to level n − 1 at rate µn, and left and right downjumps from

level n to level n+ 1 at rate 1
2λn, and which reflects off the boundary on explosion. Then

(1) X is positive recurrent ⇐⇒ ∑

n πn <∞, and then

(2) X reaches the boundary in finite time ⇐⇒ ∑

n
1

λnπn
<∞, and then

(3) any (and hence each) boundary point is regular ⇐⇒ ∑

n bn <∞, and then

(4) there exists a jointlycontinuous local time on F ⇐⇒ ∑

n

√

1
ncn <∞, and then

(5) X has visited all the states of F by a finite time,

where πn := (λ0 . . . λn−1)/(µ1 . . . µn), bn := 2n

λnπn
, and cn :=

∑∞
r=n br.
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Theorem (Continuous space process). There is a processZ in the upper halfplane, whose

vertical component Y is a Brownian motion reflecting off 0, and whose horizontal component

X is governed by the stochastic differential equation dX = σ(Y ) dW , whereW is a Brownian

motion independent of Y , and σ is a positive function which is locally squareintegrable on

[0,∞). Let R0 be the xaxis, the boundary of the domain of Z. If σ is slowly varying enough

at 0 and infinity (see Corollary 6.9 and Theorem 6.11) then

(1) any (and hence each) point of R0 is regular ⇐⇒
∫ 1

0

dt

tσ(t)
<∞, and then

(2) Z has a jointlycontinuous local time on R0 ⇐⇒
∫ 1/2

0

ϕ(z) dz

z
√

log(1/z)
<∞, and then

(3)Z will visit all the points of any compact subset ofR0 by a finite time ⇐⇒
∫ ∞

1

dt

tσ(t)
=∞,

where ϕ2(y) :=
∫ y

0

(

tσ(t)
)−1

dt.

We shall also discover how conditions (3) and (4) of the Binary Tree theorem can

be seen as merely discrete versions of conditions (1) and (2) of the Continuous Space

theorem.

Provenance and prior Publication

Chapters One and Two are joint work with David Williams, and articles based upon

them have been published in the Mathematical Proceedings of the Cambridge Philosophical

Society (Baxter and Williams [3] and Baxter and Williams [4]). Chapter One is mostly

due to Williams, with the exceptions that part of the proof of Theorem 1.2, and the first

half of the proof of Theorem 1.1 are due to Baxter. In Chapter Two, Proposition 2.4 is

due to Williams, Lemma 2.2 is due to Baxter, and Theorems 2.1, 2.3, 2.5, and 2.6 are

joint work.

An earlier version of Chapter Three has been published as Baxter [5].

Chapter Five has appeared in Séminaire de Probabilitiés XXVI (Baxter [6]).

The first three Sections of Chapter Six are being published in the Mathematical and

Physical Sciences Proceedings of the Royal Society (Baxter [7]).



Chapter One
Symmetry Characterizations

To probe a hole we first use a straight stick

to see how far it takes us. To probe the visible

world we use the assumption that things are

simple until they prove to be otherwise.

E. H. Gombrich, Art and Illusion

9
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1.1 Introduction and Summary

We begin by studying just one distribution and investigating ways of characterizing

it using symmetry properties. The distribution, which began our initial study, is the

exponential (or Abel) discount of the time spent by a Brownian motion in the halfline,

or in other words a discounted version of the arcsine law. Theorem 1.1 gives two

symmetry properties which characterize this distribution, and Theorem 1.2 derives

from them some asymptotic information about it. Section 1.5 begins a generalization

process, which continues in Section 2.4 of Chapter Two, by deriving similar symmetry

characterizations for symmetric diffusions, which involve the law of the diffusion’s

excursions from 0. In Sections 1.6 and 1.7, numerical analysis is used in an attempt,

so far abortive, to identify the distribution, although values of its density at various

points are calculated.

Let H be the function on R defined by

H(x) :=

{

0 if x < 0,
1 if x > 0.

Let B = {Bt : t > 0} be Brownian motion on R starting at 0.

The layman’s intuition (and ours) is that as t→∞, it should be the case that

H(Bt)→ 1
2 in some average sense.

(For confirmation of the layman’s intuition, see Bingham and Rogers [11].) Brownian

motion has the scaling property that for c 6= 0, {c−1B(c2t) : t > 0} is also a Brownian

motion starting at 0. It therefore follows that the distribution of the Cesàro average

Ct := t−1

∫ t

0

H(Bu)du (t > 0)

is independent of t. Lévy’s arcsine law states that for 0 6 x 6 1,

P(Ct 6 x) =
2

π
arcsin (

√
x).

Abel averaging is generally ‘stronger’ than Cesàro averaging, (though not for

bounded functions such asH). We would say thatH(Bt)→ 1
2 in Abel’s sense ifAλ → 1

2

as λ ↓ 0, where

Aλ :=

∫ ∞

0

λe−λuH(Bu)du (λ > 0).
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However, Brownian scaling shows that the distribution function F of Aλ is indepen

dent of λ.

The problem of calculating

F (x) := P(A 6 x) (0 6 x 6 1),

where

A :=

∫ ∞

0

e−uH(Bu)du, (1.1)

proves to have several very strange aspects. It is important to realize that A is not the

value Cζ of C at an exponentially distributed time independent of B. The problem of

calculating the distribution of A is a FeynmanKac̆ problem (see Section 1.3) about the

spacetime process {(t, Bt)}, and is in principle ‘one dimension up’ from the arcsine

law.

Since A is a random variable with values in [0,1], its distribution is determined

by its moments

µn := E(An) =

∫ 1

0

xndF (x) (n = 0, 1, 2, . . .).

Clearly, the µn can be evaluated by calculating some complicated integrals involving

the Brownian transition density function. In Section 1.2, we explain a ‘double recur

sion’ based on two ‘symmetry’ properties which allows us to find the first few µn

easily.

The values of the first few moments of A are as follows:

µ0 = 1, µ1 =
1

2
, µ2 =

1

2
√

2
, µ3 =

3−
√

2

4
√

2
,

µ4 =
3
√

3−
√

2−
√

6

4
√

2
,

µ5 =
15
√

3−
√

2− 5
√

6− 10

8
√

2
,

µ6 =
12
√

2− 30
√

3− 30
√

5 + 10
√

6− 3
√

10 + 45
√

15− 15
√

30

16
√

3
.

It may well be the case therefore that there is no closedform expression for F . The list

of values of µn for n 6 6 helps hint at the fact that even for moderate n (such as n = 25),
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rounding errors (even in ‘double precision’ programs) can cause serious problems in

calculating µn numerically. See Section 1.6.

In case you are interested in trying to guess the probability density function fA

of A (and for an important reason mentioned at the end of this Section), we give in

Table 1.1 values which we believe to be correct rounded to the accuracy shown. See

Section 1.7. Values of the arcsine density fC are given for comparison.

Table 1.1: some values of fA and fC :

x 1/32 1/16 1/8 1/4 1/2

fA(x) 1.44124 1.18554 0.999632 0.87253948 0.814977

fC(x) 1.82944 1.31500 0.962479 0.73510519 0.636620

The ‘numbertheoretic’ exact expressions for theµn give no idea of the asymptotic

behaviour of the (µn) sequence, and hence do not help to determine the behaviour of

F (x) as x ↓ 0. Nor are the values in Table 1.1 of much help.

Of course, one can use the arcsine law as a comparison to obtain estimates on F

such as

lim sup
x↓0

F (x)√
x

6
2
√
e

π
, (1.2)

lim inf
x↓0

F (x)
√

log 1/x√
x

>
2

π
. (1.3)

Proof of (1.2) For every t,

A ≥ e−t

∫ t

0

H(Bs)ds = te−tCt,

so that

P(A ≤ x) ≤ P(Ct ≤ xet/t) = (2/π) arcsin
√

xet/t.

Since the minimum value of et/t is e, result (1.2) follows. �

Proof of (1.3) For every t, we have

A 6

∫ t

0

H(Bu)du+ e−t,
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whence

P(A 6 x) > P[Ct 6 t−1(x− e−t)] =
2

π
arcsin

√

(x− e−t)/t .

Choose t to maximize (x− e−t)/t, so that

(1 + t)e−t = x, (x− e−t)/t = e−t = x/(1 + t).

As x ↓ 0, t ∼ log 1/x, and result (1.3) follows. �

The argument we have used to obtain (1.3) seems rather crude. However, it

yields the best possible result, and although we cannot see but quite why this is so, we

will meet this situation again for a class of distributions in Section 4.2.

Theorem 1.1 The distribution function F of A satisfies the asymptotic relation:

F (x) ∼ 2
√
x

π
√

log 1/x
as x ↓ 0. (1.4)

Equivalently (because of Tauberian theorems and (1.6a) — see later),

µn ∼ (πn logn)−
1
2 (n→∞). (1.5)

(As usual, the ∼ symbol signifies that the ratio of the two sides tends to 1.)

Proof of Theorem 1.1 In Section 1.4 �

Theorem 1.2 The distribution of A is characterized by the following two ‘symmetry’ proper

ties:

A and 1−A have the same distribution, (1.6a)

Eh(−αA) = −e−α
Eh(αA) (α ∈ R), (1.6b)

where, for z ∈ R,

h(z) :=
∞
∑

n=1

zn
√
n

n!
=

1√
π

∫ 1

0

zetzdt
√

log 1/t
. (1.7)

Proof of Theorem 1.2 See Section 1.2. �

Hardy [21] showed that

h(z) ∼ z
1
2 ez (z → +∞), (1.8)
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−h(−z) ∼ (π log z)−
1
2 (z → +∞). (1.9)

(Of course, because of (1.6a), we nowadays see both (1.8) and (1.9) as consequences of

the ‘Abelian’ half of Karamata’s ‘Tauberian’ Theorem — see Theorem 1.7.1’ of Bingham

et al. [10].)

Theorem 1.1 is proved in Section 1.4 by considering (in the light of Hardy’s

results) the behaviour of (1.6b) as α → ∞. One has to be rather careful in the use of

uniformintegrability properties and the like to prove that

Ee−αA ∼ (πα logα)−
1
2 (α→ +∞), (1.10)

which, by Karamata’s Tauberian Theorem proper, implies the desired result (1.4).

As was remarked before the statement of Theorem 1.1, it would be satisfying to

understand in probabilistic terms why that theorem is true. In a sense here, we have

too many trees and not enough wood. By the time we reach Chapter Four, the view

may be clearer.

Table 1.1 helps emphasize that the terms in the asymptoticseries expansion

for F near 0 (of which Theorem 1.1 provides the first) decrease only very slowly in

magnitude.

1.2 Proof of Theorem 1.2

There is a very quick method for calculating the moments µn (n > 0).

We allow our Brownian motion B to start at an arbitrary point x of R, and write

P
x and E

x for the corresponding probability and expectation. Thus P = P
0, E = E

0.

For α ∈ R, define

Φ(α, x) := E
xeαA. (1.11)

We exploit an obvious symmetry

Φ(α, x) = E
xeαA = E

(−x)eα(1−A) = eαΦ(−α,−x). (1.12)

Next, we note that if

T0 := inf{t : Bt = 0},
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then, for x < 0, and n ∈ Z
+, the strong Markov property shows that

E
x(An) = E

x

({

e−T0

∫ ∞

0

e−uH (BT0+u) du

}n)

(1.13)

= E
x
(

e−nT0
)

µn = µne
x
√

2n .

From (1.11) and (1.13), we obtain

Φ(α, x) =

∞
∑

n=0

αnµne
x
√

2n

n!
(x < 0). (1.14)

All we need to know in order to calculate the moments µn (n > 0) is that

for fixed α, x 7→ Φ(α, x) is continuous at x = 0, (1.15a)

for fixed α, x 7→ Φ(α, x) is differentiable at x = 0. (1.15b)

For proof, see Section 1.3.

On combining (1.12), (1.14) and (1.15), we derive

∞
∑

n=0

αnµn

n!
= eα

∞
∑

n=0

(−α)nµn

n!
, (1.16a)

∞
∑

n=1

αnµn

√
2n

n!
= −eα

∞
∑

n=1

(−α)nµn

√
2n

n!
. (1.16b)

Of course, (1.16a) just repeats the fact that A and 1 − A have the same distribution

under P. On comparing coefficients of αn in equations (1.16), we obtain

µn =

n
∑

k=0

(−1)k
(

n

k

)

µk, (1.17a)

µn = (
√

2n)−1
n
∑

k=1

(−1)k+1

(

n

k

)

µk

√
2k , (1.17b)

equation (1.17a) recursively giving µn for odd n, and (1.17b) giving µn for even n —

with no contradictions in the other cases. (Of course, µ0 = 1.)

Deriving (1.6b) is now a very easy exercise, and is left to the demanding reader. �
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1.3 The FeynmanKac̆ approach (modified)

The fact that x 7→ Φ(α, x) is differentiable at x = 0 was crucial in Section 1.2, and

one of the advantages of the FeynmanKac̆ approach is that it allows us to prove this

differentiability property. (Warning: for α 6= 0, the map x 7→ Φ(α, x) is not twice

differentiable at x = 0.)

Define

At :=

∫ ∞

t

e−uH(Bu)du = e−t

∫ ∞

0

e−uH(Bu+t)du

and note that

eαA − 1 = eαA0 − eαA∞ = −
∫ ∞

0

d

dt
(eαAt)dt

= α

∫ ∞

0

e−tH(Bt)e
αAtdt.

Now,

E
x(eαAt |Bt) = E

x

(

exp

{

αe−t

∫ ∞

0

e−uH(Bu+t)dt

} ∣

∣

∣

∣

Bt

)

= Φ(αe−t, Bt).

Hence

Φ(α, x) := E
x(eαA) = 1 + α

∫ ∞

0

e−t
E
x{H(Bt)Φ(αe

−t, Bt)}dt,

so that we have the following integral equation for Φ:

Φ(α, x) = 1 + α

∫ ∞

t=0

∫ ∞

y=−∞
e−tH(y)Φ(αe−t, y)p(t, x, y)dydt, (1.18)

where p denotes the Brownian transition density function. Thus

Φ(α, x) = 1 + α

∫ ∞

0

∫ ∞

0

e−t e
−(y−x)2/2t

√
2πt

Φ(αe−t, y)dydt. (1.19)

(The multiplicative property of the exponential function has allowed the collapsing of

a dimension.) At least formally, we have

∂Φ

∂x
(α, x) = α

∫ ∞

0

∫ ∞

0

e−t

{

∂

∂x
p(t, x, y)

}

Φ(αe−t, y)dtdy. (1.20)

If, for c ∈ R, Tc (or T (c)) denotes the hitting time inf{t : Bt = c}, then

P
0(Ty−x ∈ dt) = sgn (y − x) ∂

∂x
p(t, x, y)dt.



1.3 Symmetry Characterizations 17

Hence, the notyetproved formula (1.20) may be written:

∂Φ

∂x
(α, x) = S(α, x) := αE0

∫ ∞

0

sgn (y − x)e−T (y−x)Φ(αe−T (y−x), y)dy. (1.21)

However the expression S(α, x) is very well behaved. Firstly, Φ(αe−T (c), y) is bounded

by e|α|; secondly,

E
0e−T (c) = exp(−|c|

√
2);

and thirdly, each of the functions sgn (y−x), T (y−x) is (almost surely) continuous in x

at a fixed x different from y. The DominatedConvergence Theorem shows that S(α, x)

is therefore continuous in x. Moreover, we may now easily justify an application of

Fubini’s Theorem to show that, for a < b,

∫ b

a

S(α, x)dx = Φ(α, b)− Φ(α, a).

Since

(

1

2

∂2

∂x2
− ∂

∂t

)

p = 0 and

(

∂

∂t
+ α

∂

∂α

)

[

αe−tΦ(αe−t, y)
]

= 0,

it follows formally on applying 1
2∂

2/∂x2 to (1.18) and then performing an integration

by parts that

1

2

∂2Φ

∂x2
+ αH(x)Φ = α

∂Φ

∂α
(x 6= 0). (1.22)

Of course, deriving the modified FeynmanKac̆ differential equation (1.22) adds

nothing because we have already obtained the separationofvariables solution at (1.14)

and (1.12).

An outline of the classical FeynmanKac̆ method may be found in Williams [39].
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1.4 Proof of Theorem 1.1

We begin by outlining the strategy.

We know from (1.9) that

−(π logα)
1
2 h(−αA)→ 1 (α→ +∞). (1.23)

We shall prove below that

the family {(π logα)
1
2 |h(−αA)| : α > 1} is uniformly integrable. (1.24)

(Williams [40] contains a reminder about uniform integrability.) It therefore follows

that

−Eh(−αA) ∼ (π logα)−
1
2 (α→ +∞). (1.25)

(Indeed, given (1.23), results (1.24) and (1.25) are equivalent.) Moreover, property

(1.6a) shows that

Eh(αA) = Eh(α(1−A)) (1.26)

= α
1
2 eαE[R(α, 1− A)(1−A)

1
2 e−αA]

where

R(α, 1−A) :=
h(α(1− A))

{α(1− A)} 1
2 eα(1−A)

. (1.27)

Now, from (1.9),

R(α, 1− A)→ 1 as α→ +∞, (1.28)

and results (1.26) and (1.28) make it plausible (we shall see shortly that it is true) that

Eh(αA) ∼ α
1
2 eαE(e−αA) (α→ +∞). (1.29)

From (1.25), (1.29) and (1.6b), we deduce (1.10) which implies Theorem 1.1.

Proof of (1.24) Set

g(z) := −h(−z) =
∫ 1

0

ze−ztdt
√

π log 1/t
(z ∈ R

+),
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and for α > 1, define

Xα := −(π logα)
1
2h(−αA) = (π logα)

1
2 g(αA).

We must show that the family (Xα : α > 1) is uniformly integrable.

The function g : R+ → R
+ is continuous, and, from (1.9),

g(z) ∼ (π log z)−
1
2 (z →∞).

Hence, for some constants K0 and K1,

0 6 g(z) 6 K0 (∀z > 0), 0 6 (π log z)
1
2 g(z) 6 K1 (∀z > 1).

Let α > 1. If A > α−3/4 (so that αA > 1), then

0 6 Xα 6 K1

{

π logα

π logαA

}

1
2

6 2K1,

since log(αA) > (logα)/4. To put this another way, we have

{Xα > 2K1} ⊆ {A 6 α−3/4}.

Thus

E(X2
α; Xα > 2K1) 6 E(X2

α; A 6 α−3/4) 6 (π logα)K2
0P(A 6 α−3/4),

and it now follows from (1.2) that E(X2
α; Xα > 2K1)→ 0 as α→∞. Thus

K2 := sup
α>1

E(X2
α; Xα > 2K1) <∞,

and supα E(X2
α) 6 4K2

1 + K2 < ∞. We have shown that the family (Xα : α > 1) is

even bounded in L2, whence it is certainly uniformly integrable. �

Proof of (1.29) For α > 0, define

Φ(−α) := E(e−αA).

Then (1.29) is equivalent to the statement that

EV (α)→ 1 as α→∞,
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where

V (α) := R(α, 1− A)(1− A)
1
2 Φ(−α)−1e−αA.

Recall that

R(α, 1− A) = h(Zα)
{

Z
1
2
αe

Zα

}−1

where Zα := α(1− A).

Since log 1/(1− t) > t for 0 < t < 1, we have, for z > 0,

h(z) =

∫ 1

0

ze(1−t)zdt
√

π log 1/(1− t)
6 zez

∫ ∞

0

e−tzdt√
πt

,

so that

h(z) 6 z
1
2 ez (z > 0), (1.30)

and

EV (α) 6 1 (α > 0). (1.31)

Next, note that for 0 < η < δ < 1 (and α > 0),

E
(

e−αA; A 6 η
)

> eα(δ−η)
P(A 6 η)E

(

e−αA; A > δ
)

,

whence it is obvious that

Φ(−α)−1
E
(

e−αA; A 6 δ
)

→ 1 (α→∞). (1.32)

For the moment fix δ with 0 < δ < 1. Let ε > 0 be given. By (1.8), we can choose

α0(δ) such that whenever α > α0(δ) and A 6 δ, we have R(α, 1− A) > 1 − ε. Then,

for α > α0(δ), we have

EV (α) > E(V (α); A 6 δ)

> (1− ε)(1− δ)
1
2 Φ(−α)−1

E(e−αA; A 6 δ),

so that, by (1.32),

lim infEV (α) > (1− ε)(1− δ)
1
2 . (1.33)

Since (1.33) is true for all ε and δ in (0,1) and since also (1.31) is true, the result follows.

�
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1.5 A generalization

The ‘mysterious’ symmetry property (1.6b) finds its natural setting in excursion theory

(see part 8 of chapter 6 of Rogers and Williams [33] for this theory), and may therefore

be studied in very general contexts. Here (for those who know the jargon) is a first

generalization of our earlier result to certain 1dimensional diffusions.

Suppose for example that X is a diffusion process on R satisfying the stochastic

differential equation

dX = σ(X)dB + b(X)dt, X0 = 0, (1.34)

where σ and b are nice functions on R, σ being positive and even, and b being odd. For

λ > 0, define

Aλ :=

∫ ∞

0

λe−λtH(Xt)dt. (1.35)

Then the distribution ofAλ is completely characterized by the following two symmetry

properties:

Aλ and 1− Aλ have the same distribution, (1.36a)

Ehλ(−αAλ) = −e−α
Ehλ(αAλ) (α ∈ R), (1.36b)

where

hλ(z) =

∫ 1

0

zeztν[λ−1 log 1/t,∞]dt, (1.37)

where ν is (some normalization of) the Lévy measure on (0,∞] which describes the

durations of excursions from 0. If p is the transition density function of X , then

∫

(0,∞]

(1− e−θt)ν(dt) = const.

{
∫ ∞

0

e−θtpt(0, 0)dt

}−1

. (1.38)

Excursion theory therefore reiterates the fundamental problem.

Result (1.36b) may be proved by the methods of this Chapter. Section 2.4 of

Chapter Two will both derive (1.36b) from a more fundamental result and relate that

proof to the methods used here by means of Lévy’s formula.
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1.6 Numerical analysis: finding the moments

The recursion scheme (in which µ0 = 1 and)

2nµn =
n−1
∑

k=0

(−1)k
(

n

k

)

2kµk, (n odd), (1.39a)

2nµn

√
2n =

n−1
∑

k=0

(−1)k+1

(

n

k

)

2kµk

√
2k (n even), (1.39b)

is equivalent to, but somewhat more stable than, that provided by equations (1.17).

Proof of (1.39a) Equation (1.39a) just asserts that

E[(2A− 1)n] = 0 (n odd). �

Proof of (1.39b) The following Lemma with an = µn

√
2n shows that the equations at

(1.39b) are linearly dependent on the evenn equations at (1.17b). (Section 1.5 makes

it clear that the Lemma is relevant in other cases too.) �

Lemma 1.3 For a sequence a = (an : n = 1, 2, . . .) of real numbers, define

Er(a) :=
2r
∑

k=1

(−1)k
(

2r

k

)

ak + a2r (r > 1),

Fn(a) :=
2n
∑

k=1

(−1)k
(

2n

k

)

2kak (n > 1).

Then there exist unique constants (cn,r : n > r > 1) such that

Fn(a) =

n
∑

r=1

cn,rEr(a) (n > 1). (1.40)

Proof of Lemma 1.3 Standard lineardependence considerations show that it is enough

to prove that (1.40) holds whenever a has the form

ak = ( 1
2 − 1

2 t)
k,

in which case (with obvious abuse of notation)

Fn(t) = t2n − 1, Er(t) = 2−2r
{

(1 + t)2r + (1− t)2r
}

− 1,
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and linear independence of the polynomials (in t2)E1, E2, . . . , En shows that, for some

unique constants cn,r(n > r > 1) and cn,0(n > 1), we have

Fn(t) =

n
∑

r=1

cn,rEr(t) + cn,0.

However, when t = 1, Fn(t) = 0 and Er(t) = 0 (for all n > 1 and r > 1). Hence

cn,0 = 0 for every n. �

We had conjectured that the Lemma is true with

cn,r =

(

2n

2r

)

22r−1bn−r, (1.41)

where (bn : n = 0, 1, 2, . . .) is the sequence of integers specified by

n
∑

k=0

(

2n+ 1

2k

)

22n−2kbk = 1 (n > 0). (1.42)

The first proof of the Lemma was then obtained, and in this strong form, by Kevin

Buzzard of Trinity College, Cambridge. He used a clever induction argument.

We then found the ‘abstract’ proof given above, and it reveals the whole structure.

For if we define integers (bn : n = 0, 1, 2, . . .) via

∞
∑

n=0

bn
θ2n

(2n)!
= sech θ, (1.43)

and define cn,r as at (1.41), then the Lemma follows on comparing coefficients of θ2n

in the identity

2(cosh θt− cosh θ) = {cosh(1 + t)θ + cosh(1− t)θ − cosh 2θ − 1}sech θ.

It is now merely an exercise in manipulation to show that (1.39b) amounts to (1.6b)

with 2α replacing α.

In order to calculate µn up to n = 512 (using (1.39)) and to invert the moments (as

described in the next section) to obtain Table 1.1, we had to use Mathematica working

initially to 1400digit precision! The numbers in the 2nd and 3rd columns of Table 1.2

are rounded to the last occurring digit.
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Table 1.2: some moments of A:

n µn (n logn)
1
2µn − π− 1

2

4 0.2355459516514725 −0.0095212550729781

8 0.1518057773661884 0.0549757768411142

16 0.0966634970812128 0.0796315382569828

32 0.0615894446082279 0.0844135009074081

64 0.0395051386283965 0.0803237892749407

128 0.0255645569083701 0.0729066024601239

256 0.0166932887256634 0.0647654709911452

512 0.0109919876599126 0.0570300854833243

1.7 Numerical analysis: momentinversion formula

IfX is a random variable with values in [0,1] and with nice probability density function

f on [0,1], then, for 0 < x < 1,

f(n, x) := n

(

n

[nx]

)

(

Dn−[nx]m
)

[nx]
→ f(x) (n→∞). (1.44)

In (1.44),

mk := E(Xk) (k = 0, 1, 2, . . .),

and for a sequence a = (ak : k = 0, 1, 2, . . .), we define the sequence Da via

(Da)k := ak − ak+1 (k = 0, 1, 2, . . .).

(See Exercise E18.5 in Williams [40], and extend it along the lines of Exercise E7.1 there.)

Let X have the Beta distribution with density

f(x) =
Γ(β + γ)

Γ(β)Γ(γ)
xβ−1(1− x)γ−1 (0 6 x 6 1),

where β > 0, γ > 0. Then for 0 6 i 6 n,

n

(

n

i

)

(Dn−im)i = n
Γ(n+ 1)

Γ(β + γ + n)

Γ(β + i)

Γ(i+ 1)

Γ(n− i+ γ)

Γ(n− i+ 1)

Γ(β + γ)

Γ(β)Γ(γ)
,
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and, since (see §4.42 of Titchmarsh [35]), for a > 0,

Γ(r + a)/Γ(r) = ra(1 + O(r−1)) (r →∞),

we have

f(n, x) = f(x) + O(n−1), (1.45)

the error term being uniform over x in (δ, 1− δ) for any δ in (0, 1
2 ). It seems reasonable

to suppose that (1.45) will hold whenm is replaced by µ and f by the unknown density

fA of A. Indeed, there is fairly strong numerical evidence of an asymptotic expansion

(for each x) of the form

fA(n, x) ∼ fA(x) +
∑

k

ak(x)n
−k,

and this idea was used in making the estimates at Table 1.1.



Chapter Two
Discounted Functionals

In completing one discovery we never fail to get

an imperfect knowledge of others of which we

could have no idea before, so that we cannot solve

one doubt without creating several new ones.

Joseph Priestley, Experiments and Observations

on Different Kinds of Air

26
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2.1 A largedeviations problems

As in Chapter One, we are mainly concerned with exponentially discounted additive

functionals. We find that the largedeviation behaviour of the average depends on the

precise average used. We derive, in certain cases, a link (but not equality) between the

Cesàro average and Abel average limits, and would expect that other averages would

produce other limiting behaviours. We focus still on the exponentially discounted

(Abel average) case, both because of its tractability and because of its frequent appear

ance in decision/control problems and models of financial markets. We do give in

Section 2.4 the promised ‘excursion’ treatment of symmetry characterizations of the

type intimated in Chapter One; and this new treatment is simpler, more illuminating

and more general. First, however, we focus attention on a different kind of asymptotic

behaviour from that studied in Chapter One, and on differential equations for exact

results.

Let X be an irreducible continuousparameter Markov chain on the finite set

S = {1, 2, . . . , n}, with Qmatrix Q. For λ > 0, define the random probability measure

Aλ on S by setting

Aλ(i) := Aλ({i}) :=

∫ ∞

0

λe−λtIi(Xt)dt, (2.1)

where Ii(j) := δij (i, j ∈ S). By the ergodic theorem, we have almost surely (a.s.)

Aλ(i)→ πi as λ ↓ 0, (2.2)

where π is the invariant probability distribution forX . One is therefore obliged to ask:

what is the associated largedeviation theory? One expects that, irrespective of where

X starts, we have (as λ ↓ 0) some kind of asymptotic formula:

P(Aλ ∈ dx) ≈ exp{−λ−1K(x)}meas(dx) (2.3)

for some ratefunction K on the set

M :=
{

(xi)i∈S : xi > 0,
∑

xj = 1
}

⊆ R
n

of probability measures on S, where meas denotes the normalized Euclidean measure

of total mass 1 on the (n − 1)simplex M . Indeed, in this case, one expects (2.3) to
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hold in the ultraprecise sense that if fλ
A denotes the density of the distribution of Aλ

relative to the measure meas, then

lim
λ↓0

λ log fλ
A(x) = −K(x), x ∈M. (2.4)

The standard precise form of the largedeviation principle is given in Theorem 2.1.

A heuristic appeal to ‘the LaplaceVaradhan principle’ suggests that for any

function v on S,

E exp

{
∫ ∞

0

e−λtv(Xt)dt

}

= E exp
{

λ−1
∑

viAλ(i)
}

≈
∫

exp
{

λ−1
(

∑

vixi −K(x)
)}

meas(dx).

Again, one expects this to translate into precise form:

lim
λ↓0

λ logE exp

{
∫ ∞

0

e−λtv(Xt)dt

}

= η(v), (2.5)

where

η(v) = sup
x∈M

{

∑

i

vixi −K(x)

}

. (2.6)

The usual pattern of things in largedeviation theory would then give

K(x) = sup
v∈Rn

{

∑

i

vixi − η(v)
}

. (2.7)

Let us recall briefly the classical results on undiscounted occupation times in this

chain setting. These form a minor part of the DonskerVaradhan theory. (For marvel

lous treatments of the full theory, see Varadhan [36] and Deuschel and Stroock [15].)

Let

Ct(i) := t−1

∫ t

0

Ii(Xs)ds, t > 0. (2.8)

The FeynmanKac̆ formula allows one to prove that

lim
t↑∞

t−1 logE exp

{
∫ t

0

v(Xs)ds

}

= δ(v), (2.9)

where

δ(v) := sup{Rz : z ∈ spect(Q+ V )}, (2.10)
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where V denotes the diagonal matrix diag(vi) and spect(·) denotes spectrum (here, the

set of eigenvalues). The PerronFrobenius theorem shows that δ(v) ∈ spect(Q + V ).

Deeper is the fact, at 4.2.16 of Deuschel and Stroock [15], that (in the largedeviation

sense of limit)

lim
t↑∞

t−1 log f t
C(x) = −I(x), (2.11)

where f t
C is the density of Ct relative to meas, and, from 4.2.17 of Deuschel and

Stroock [15],

I(x) = sup
v

{

∑

vixi − δ(v)
}

. (2.12)

Moreover, I(x) has the alternative expression (Section 13 of Varadhan [36])

I(x) = sup
{

−
∑

i

xi(Qh)i/hi : hi > 0, ∀i
}

. (2.13)

In the case when X is symmetrizable in the usual sense that

πiqij = πjqji, ∀(i, j), (2.14)

the optimalh for the righthand side of (2.13) is given (modulo positive scalar multiples)

by

hj = (xj/πj)
1
2 . (2.15)

One can produce a heuristic argument which suggests that η is the convex func

tion

η(v) =

∫ 1

0

α−1δ(αv)dα, (2.16)

but proving this in general is going to be one of the highpoints of Chapter Four

and involves some technical detail. We now take a natural first step by proving the

following theorem. Further development will be made in Sections 3.2 and 4.3.

Theorem 2.1 Let X be symmetrizable. Then, irrespective of where X starts, the following

results are true.

(i) Equation (2.5) holds with η as at (2.16).

(ii) Define K to be the convex conjugate of η as at (2.7). Then the largedeviation principle

holds for Aλ with rate function K: in other words,
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for any closed subset F of M ,

lim sup
λ↓0

λ logP(Aλ ∈ F ) 6 − inf{K(x) : x ∈ F},

for any open subset G of M ,

lim inf
λ↓0

λ logP(Aλ ∈ G) > − inf{K(x) : x ∈ G}.

Proof of Theorem 2.1 In Section 2.5 �

Following Theorem 1.1, we can also derive a lemma about the behaviour of

the marginal densities at 0, whose proof will enable us to prove the exact result of

Theorem 2.3.

Lemma 2.2 Let X be symmetrizable. Let F
(i)
j be the marginal law of Aλ(i) starting X at j,

and let Q[i] be the substochastic matrix formed by setting the ith row and ith column of Q to

0. Then

F
(i)
j (x) = k

(

aj + o(1)
)

xγ/λ (j 6= i),

F
(i)
i (x) = k

(

ai + o(1)
)

x(γ/λ)+1 where o(1)→ 0 as x ↓ 0.
(2.17)

Here k is a positive constant, and γ and the vector (aj)j 6=i are respectively the minimal positive

eigenvalue and nonnegative eigenvector of −Q[i], and ai is
∑

j 6=i qijaj/(λ+ γ).

Proof of Lemma 2.2 In Section 2.6 �

2.2 Symmetry characterizations for exact results

The ‘symmetry’ referred to in the title of this subsection has nothing to do with sym

metrizability of the chain X ; rather, it has to do with ‘symmetry in relation to change

in starting position’.

We do not now assume that X is symmetrizable.

There is no natural coordinate system for our set M of probability measures on

our statespace S = {1, 2, . . . , n}. However each of the measures

dx1 . . . dxi−1 dxi+1 . . . dxn
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on the coordinate space Mi := {(xj)j 6=i : xj > 0,
∑

xj 6 1} induce the same measure

on M . For technical ease we must extend fλ to a R
n neighbourhood of M , but the

operators we shall use will be invariant to the extension chosen. Similarly on an edge

of M , such as M ∩ {xi = 0}, all the measures

dx1 . . . dxi−1 dxi+1 . . . dxj−1 dxj+1 . . . dxn

on Mj ∩ {xi = 0} induce the same measure (for each j), which we call dx(i).

It is possible to calculate the joint moments of Aλ(1), . . . , Aλ(n − 1) in a similar

way to that used in Section 2.6. However, even in special cases, it is rather messy to

use moments to verify the form of the joint density. The following theorem allows

direct verification of the answer in certain circumstances.

Theorem 2.3 The family (fλ
1 , . . . , f

λ
n ) is characterized by (the fact that each fλ

i is nonnegative

and integrates to 1, and) the equations:

Lfλ = −λ−1Qfλ, (2.18)

where L is the matrix differential operator

L := diag
(

∑

j 6=i

(∂j − ∂i)xj
)

i∈S

using ∂i to denote ∂/∂xi, with the boundary conditions that for each i:

lim
x↓0

∫

M∩{yi=x}
fλ
i (y) dy

(i) = 0. (2.19)

Proof of Theorem 2.3 In Section 2.7 �

Note that Theorem 2.3 implies that

−(n− 1)λ− L(λ log fλ
i ) + (n− 1)(λ log fλ

i ) = (Qfλ)i/f
λ
i . (2.20)

These results make it plausible that ifAλ satisfies a largedeviations principle with rate

function K, then

(L̃ − ∂i)K = −gi, (2.21)
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where L̃ :=
∑

xj∂j = Li + ∂i − (n− 1) and g is the plausible limit

gi(x) = − lim
λ↓0

(Qfλ)i(x)/f
λ
i (x). (2.22)

Note that it follows from (2.21) that

∑

k6n

xkgk(x) = 0. (2.23)

Proposition 2.4 (Duality Principle) Assume thatAλ satisfies the largedeviation principle

associated with some rate function K and that η and K are related by the pair of Legendre

Fenschel transforms:

η(v) = sup
y∈M

{

∑

i

viyi −K(y)

}

, (2.24)

K(x) = sup
w∈Rn

{

∑

i

wixi − η(w)
}

. (2.25)

Assume further that (2.21) and (2.22) hold.

Let x ∈ M , and let v := g·(x) ∈ R
n. Then the supremum in (2.24) is attained when

y = x, and the supremum at (2.25) is achieved when w = v. We therefore have, for x ∈M ,

K(x) = −η(g·(x)), (2.26)

(grad η)(g·(x)) = x. (2.27)

Proof of Proposition 2.4 Extending (2.25) to the convex function K̃(x) over x in R
n,

we can solve (2.24) by Lagrangian methods, using the fact that (2.21) becomes

∇K̃ = (L̃K̃)1 + g, where L̃ =

n
∑

j=1

xj∂j . (2.28)

Then for the appropriate value of the Lagrange multiplier, y = x is a local optimum

(and hence a global optimum, by the convexity of K̃). Then (2.23) shows that the

value of the supremum is −K(x), confirming (2.26). The remainder of the result is

selfevident.
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Remarks (i) The function K on M attains its minimum value 0 at π. Thus, from (2.21),

g(π) = 0, and, from (2.27), (grad η)(0) = π.

(ii) If we believe (2.16), then

(grad η)(v) =

∫ 1

0

(grad δ)(αv)dα, (2.29)

and so grad η inherits from grad δ the property that it takes its values in M .

(iii) Many of the most interesting questions remain unresolved.

2.3 An example

Suppose that π is a probability measure on S with πi > 0 (∀i), and that

qij = πj − δij for all i, j.

Then X is symmetrizable with invariant measure π. From (2.15), we find that

I(x) = 1−
(

∑√
xiπi

)2

; (2.30)

and from (2.10) we find that δ(v) is the unique root δ in (sup(vi − 1),∞) of

∑ πk
δ + 1− vk

= 1. (2.31)

Defining η̃, by

η̃(v) = δ(v)−
∑

πk log[δ(v) + 1− vk], (2.32)

we can differentiate and use (2.31) to see that

∂

∂α
η̃(αv) =

δ(αv)

α
. (2.33)

Theorem 2.1 now tells us that η = η̃, and that the rate function K is obtained from η as

at (2.7). The supremum is achieved (differentiate) at

vk = gk(x) = 1− πk
xk
, (2.34)

with value

K(x) =
∑

πi log(πi/xi), (2.35)
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the relative entropy ‘the wrong way round’.

In fact, it is possible to calculate fλ
A(x) explicitly for this example: if X starts at i,

and we write fλ
i (x) for fλ

A(x) for this case, then

fλ
i (x) =

xiπ
−1
i Γ(λ−1)

Γ(n)

∏

j∈S

x
(πj/λ)−1
j

Γ(πj/λ)
; (2.36)

and (of course) this result implies that (2.4) holds with K as at (2.35). The presence of

Γ(n) is due to the use of the normalized measure meas.

We can prove (2.36) by checking that the the (fλ
i ) satisfy (2.18) and (2.19). We can

reduce (2.18) by changing coordinates from M to (R+)n (where (2.36) is also defined)

to

(1 + ∂i)f
λ
i −

(

∑

j

∂jxj

)

fλ
i = λ−1(Qfλ)i (1 6 i 6 n). (2.37)

2.4 Subordinators

Theorem 2.5 should be seen both as preparation for Theorem 2.6, and as an analogue

of Theorem 2.3 for a special kind of finitestate semiMarkov process.

Theorem 2.5 Let ξ1, ξ2, . . . be independent identically distributed (IID) random variables

with values in {1, . . . , m} so that there are some (pk)
m
k=1 with pk in (0, 1),

∑

k pk = 1, and

P(ξi = k) = pk. For each k in {1, . . . , m}, let W k
1 ,W

k
2 , . . . be IID random variables in (0,∞].

(Note that the value +∞ is allowed.) Suppose that all the variables introduced above are

independent. For i ∈ N = {1, 2, 3, . . .} and n ∈ Z
+ := {0} ∪ N, define

Wi :=
m
∑

k=1

Ik(ξi)W
k
i , Sn :=

n
∑

j=1

Wj ,

so that S0 := 0. For λ > 0, define

Aλ(k) :=
∞
∑

n=1

Ik(ξn)
(

e−λSn−1 − e−λSn
)

.

Let

ϕk(λ) := pkE
(

1− e−λWk
1
)

(λ > 0), (2.38)

hkλ(z) :=
∞
∑

n=0

ϕk(nλ)z
n

n!
(λ > 0, z ∈ R). (2.39)
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For a mvector v, the distribution of v⊤Aλ is characterized by the symmetry property:

m
∑

k=1

eαvk Ehkλ
(

α(v⊤Aλ − vk)
)

= 0 (α ∈ R). (2.40)

Proof of Theorem 2.5 In Section 2.8 �

The idea is that we have a process X = {Xt : 0 6 t <∞} such that

X = k on (Sn, Sn+1) if ξn+1 = k.

Then

Aλ(k) =

∫ ∞

0

λe−λtIk(Xt)dt. (2.41)

We now proceed to the continuousparameter version of Theorem 2.5, which

generalizes Section 1.5 of Chapter One.

Recall that a subordinator ρ is a rightcontinuous process {ρt : t > 0} with non

decreasing paths and with stationary independent increments and such that ρ0 = 0. If

ρ is a subordinator, then for some constant c > 0 and some (Lévy) measure µ on (0,∞],

we have for γ > 0,

E exp{−γρ(t)} = exp{−tϕ(γ)},

where

ϕ(γ) = cγ +

∫

(0,∞]

(1− e−γℓ)µ(dℓ).

Then

ρ(t) = ct+
∑

s6t

(∆ρ)(s), (∆ρ)(s) := ρ(s)− ρ(s−),

and the number of jumps of size greater than ℓ made by ρ during timeinterval [0, t]

is Poisson with parameter tµ[ℓ,∞]. We allow ρ to make infinite jumps; and of course

ρ = ∞ from the time of the first infinite jump on. We call our subordinator ρ driftless

if c = 0.

Theorem 2.6 Suppose that (ρk)
m
k=1 are independent driftless subordinators with

E exp
{

−γρk(t)
}

= exp
{

−tϕk(γ)
}

, (2.42)

ϕk(γ) =

∫

(0,∞]

(

1− e−γℓ
)

µk(dℓ). (2.43)
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Define

ρ(t) :=
m
∑

k=1

ρk(t),

Aλ(k) :=
∑

t

exp
{

−λρ(t−)
}

[

1− exp
{

−λ(△ρk)(t)
}

]

.

Then, for amvector v, the distribution of v⊤Aλ is characterized by (2.40), where the functions

hkλ are obtained from the ϕk of (2.42) via the analogue of formula (2.39), whereupon

hkλ(z) =

∫ 1

t=0

zeztµk

[

λ−1 log(1/t),∞
]

dt. (2.44)

Proof of Theorem 2.6 In Section 2.8 �

The obvious application of Theorem 2.6 is to the case of Section 1.5 in which we

have a nice diffusion process X on R with local time Lt at 0 and in which we set

τt := inf{u : Lu > t},

ρ1(t) := meas{s 6 τt : Xs > 0},

ρ2(t) := meas{s 6 τt : Xs < 0}.

Then it is well known that ρ1 and ρ2 are independent subordinators. We now have

Aλ(1) =

∫ ∞

0

λe−λtI(0,∞)(Xt)dt.

Equation (2.40) now becomes

Eh2
λ(αAλ(1)) = −eαEh1

λ

(

−α(1−Aλ(1))
)

, (2.45)

which together with (2.44) takes us back to the results of Section 1.5.

It is interesting to compare the method of this paper with that of Chapter One in

the light of Lévy’s formula:

ϕ1(γ) = const.
∂

∂x
E
x(e−γT0)

∣

∣

x=0+
, (2.46)

where T0 := inf{t : Xt = 0} and E
x denotes the law of X starting from x. This formula

confirms the equivalence of the equation derived from (1.15b) and the equation (2.45).

For discussion of Lévy’s formula, see Section 6.2 of Itô and McKean [22].
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2.5 Proof of Theorem 2.1

AsX is symmetrizable, there is an invariant distribution π, such that Q is a symmetric

operator in the Hilbert space defined by the inner product:

〈u, v〉 :=
n
∑

i=1

πiuivi.

We use 1 to denote the constant vector which has norm 1. Given a vector v, we set

Bλ :=
∫∞

0 e−λtv(Xt) dt, and ϕi(α, λ) := Ei(e
αBλ). If we set Bλ(t) :=

∫ t

0 e
−λsv(Xs) ds,

and we define M to be a martingale, by

Mt := E(eαBλ | Ft), (2.47)

then by the strong Markov property

Mt = eαBλ(t)EXt

(

eαe
−λtBλ

)

= eαBλ(t)ϕXt
(αe−λt, λ). (2.48)

Applying Itô’s formula to (2.48) gives

dMt = eαBλ(t)

{

αe−λtv(Xt)ϕXt
(αe−λt, λ)− αλe−λt ∂ϕ

∂α
+Qϕ

}

dt+ d(mart), (2.49)

whence we deduce that

αλ
∂ϕ

∂α
= (Q+ αV )ϕ, (2.50)

where V is diag(v). To find the asymptotics of ϕ, as λ tends to 0, we discount ϕ, by

defining (with δ as in (2.10))

ψi(α, λ) := ϕi(α, λ) exp
(

− 1

λ

∫ α

0

δ(βv)

β
dβ
)

, (2.51)

and (2.50) becomes:

αλ
∂ψ

∂α
= −R(α)ψ, (2.52)

where R(α) := δ(αv)I − (Q+ αV ). The PerronFrobenius Theorem, of which there is

a good treatment in Seneta [34], tells us that R(α) has a zero eigenvalue, and that all

other eigenvalues have positive real part. As R(α) is symmetric with respect to the

inner product, it is diagonalizable with all eigenvalues but the zero eigenvalue real
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and positive. Theorem II.1.10 of Kato [24] allows us a smooth (in fact holomorphic in

a complex neighbourhood of R) choice of both eigenvalues and orthonormal eigen

vectors, which we denote (µi(α))
n
i=1 and (yi(α))

n
i=1 respectively. As R(α) is positive

semidefinite, equation (2.52) suggests that as λ gets small, ψ will track yn (the eigen

vector corresponding to 0, with yn(0) = 1). Certainly (2.52) bounds ‖ψ‖ by 1 because

ψ(0, λ) = 1 and

〈ψ, ψ〉′ = − 2

αλ
〈R(α)ψ, ψ〉 6 0. (2.53)

We can write ψ as
∑

i ξi(α, λ)yi(α), knowing that the (ξi) are bounded by 1 and the

(y′i(α)) are bounded by some K for all α in [0, 1]. Equation (2.52) becomes:

∂ξi
∂α

+
µi(α)ξi(α, λ)

λα
= 〈ψ, y′i〉 6 K. (2.54)

Now for any i not equal to n, we deduce that

∂

∂α
(ξifi) 6 Kfi, where fi(α) := exp

(

− 1

λ

∫ 1

α

µi(β)

β
dβ
)

. (2.55)

Hence

ξi(α, λ) 6 K

∫ α

0

exp
(

− 1

λ

∫ α

β

µi(γ)

γ
dγ
)

dβ 6
K

l
λ, (2.56)

where l is a lower positive bound for the µi(α)/α for all α in (0, 1]. The same is true of

the −ξi, so (2.56) actually provides a bound on the modulus of ξi. Considering (2.54)

with i equal to n shows us that







∂ξn
∂α






=






∑

i6=n

ξi(α, λ)〈yi, y′n〉





6 K ′λ, for some K ′,

and hence |ξn(α, λ)− ξn(0, λ)| 6 K ′αλ. (2.57)

We can now deduce that

lim
λ→0

ψi(α, λ) = yn(α)(i) > 0. (2.58)

The positivity of yn(α)(i) follows from the PerronFrobenius Theorem. Finally we can

say that

lim
λ→0

λ logEi exp
(

∫ ∞

0

e−λtv(Xt) dt
)

= lim
λ→0

λ logϕi(1, λ)
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= lim
λ→0

λ
(

logψi(1, λ) +
1

λ

∫ 1

0

δ(αv)

α
dα
)

=

∫ 1

0

δ(αv)

α
dα = η(v). (2.59)

Theorem II.2 of Ellis [18], with Yλ(i) :=
∫∞

0 e−λtIi(Xt) dt and c := η, is exactly the

second part of the theorem. �

2.6 Proof of Lemma 2.2

Conditioning on the first jump allows us to decompose Aλ(i) as

(Aλ(i)|X0 = i) = 1− e−λE(qi)(1− (Ãλ(i)|X0 = k)
)

w.p.
qik
qi
, (k 6= i) (2.60a)

and (Aλ(i)|X0 = j) = e−λE(qj)(Ãλ(i)|X0 = k) w.p.
qjk
qj

(k 6= j 6= i), (2.60b)

where E(q) denotes an exponential random variable with parameter q, and Ãλ(i) is

distributed as Aλ(i) and is independent of the exponential variables. (‘w.p.’ means

with probability.) In terms of the distributions, equations (2.60) assert that

F
(i)
i (x) =

1

λ
(1− x)qi/λ

∫ x

0

∑

k 6=i

qikF
(i)
k (y)(1− y)−(1+qi/λ) dy, (2.61a)

and F
(i)
j (x) = xqj/λ

(

1 +
1

λ

∫ 1

x

∑

k 6=j

qjkF
(i)
k (y)y−(1+qj/λ) dy

)

, (i 6= j). (2.61b)

Thus the (F
(i)
j ) are smooth on (0, 1), and

λ(x− 1)
∂F

(i)
i

∂x
= −(QF (i))i, (2.62a)

and λx
∂F

(i)
j

∂x
= −(QF (i))j , (i 6= j). (2.62b)

Changing the variable in (2.62) to

g(t) : = F (i)(e−λt),

gives
∂g

∂t
=
(

Q[i] +R − (eλt − 1)−1S
)

g, (2.63)

where Rjk : = δik(1− δij)qji, and Sjk := δijqik.
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As X is symmetrizable, we can split Q[i] up into irreducible blocks I1, . . . , Ir forming

a disjoint partition of {1, . . . , n}\{i}. By the PerronFrobenius theorem, each block

Is has an eigenvector a(s) which is strictly positive on Is and zero elsewhere, with

corresponding eigenvector −γs < 0. We assume that γ1 = γ is minimal amongst the

(γs). As Q[i] is selfadjoint, it has n orthogonal eigenvectors, n − 1 of which have ith

coordinate 0 and are in common with Q[i] +R, which also has 1 as a zero eigenvector.

The orthogonality also tells us that each a(s) is the unique nonnegative eigenvector in

Is. The Levinson theorem, very clearly presented in Eastham [17], says that, asQ[i]+R

is diagonalizable, a basic solution g to (2.63) will satisfy

eθtg(t)→ b as t→∞, (2.64)

where b is an eigenvector of Q[i] + R and −θ is the corresponding eigenvalue. As g

is nonnegative and goes to 0, the dominant term must involve one of the (a(s), γs).

Let X∗ be the process X conditioned never to jump out of I1 ∪ {i}, which will have its

discounted occupation timeA∗
λ(i) > Aλ(i) in the obvious stochasticdomination sense.

Thus by the above (as there is only one block and it has (a(1), γ1) as an eigenpair)

F
(i)
j (x) > F

(i)∗
j (x) ∼ ka

(1)
j xγ1/λ as x ↓ 0 (j ∈ I1).

We see that the dominant term is that of I1, so proving the first line of (2.17). The

equation at (2.61a) gives the second. (Note that even if γ is common to some of the Is

then there will be some a in the eigenspace for which (2.17) holds.) �

Remark We can use (2.62) again to get the stronger analogue of (2.17) for the marginal

densities (f
(i)
j ):

f
(i)
j (x) = k(γ/λ)

(

aj + o(1)
)

xγ/λ−1 (j 6= i),

f
(i)
i (x) = k(γ/λ+ 1)

(

ai + o(1)
)

xγ/λ where o(1)→ 0 as x ↓ 0.
(2.65)

Thus, for the symmetrizable case, we know the rate of convergence in (2.19).
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2.7 Proof of Theorem 2.3

We posit densities (fλ
i (y))

n
i=1 for Aλ under the Pi on the (n − 1)simplex M :=

{ (y1, . . . , yn) : yi > 0,
∑

i yi = 1 }, and dy is the measure induced by any of the

coordinate measures. Writing (2.50) at α = λ in terms of the densities gives:

λ

∫

M

n
∑

j=1

vjyjf
λ
i (y)e

v⊤y dy =

∫

M

n
∑

j=1

qijf
λ
j (y)e

v⊤y dy + λ

∫

M

vif
λ
i (y)e

v⊤y dy. (2.66)

Fixing i, and vn = 0, and setting gj(x) := (xj − δij)fλ
i (x), an application of Stokes’

Theorem gives us

−
n
∑

j=1

∫

M∩{yj=0}
gj(y)e

v⊤y dy(j)−
n
∑

j=1

∫

M

∂gj
∂xj

ev
⊤y dy =

1

λ

∫

M

(Qfλ)i(y)e
v⊤y dy. (2.67)

Now using (2.62) we can deduce from

∫ x

0

1

xj − δij

∫

M∩{yj=xj}
gj(y) dy

(j) dxj = F
(j)
i (x), (2.68)

that

∫

M∩{yj=x}
gj(y) dy

(j) = − 1

λ
(QF (j))i(x)→ 0 as x ↓ 0. (2.69)

Hence, as ev
⊤y is bounded and gj has constant sign, the boundary terms of equation

(2.67) vanish, to show that

−
n
∑

j=1

∫

M

∂gj
∂xj

ev
⊤y dy =

1

λ

∫

M

(Qfλ)i(y)e
v⊤y dy. (2.70)

By the uniqueness of Laplace transforms,

−
n
∑

j=1

∂

∂xj

(

(xj − δij)fλ
i (x)

)

=
1

λ
(Qfλ)i(x), (2.71)

which is merely another way of writing (2.18). Conversely if fλ satisfies (2.18) and

(2.19), then (2.66) must hold, so (2.50) holds with ϕi :=
∫

M
eαv

⊤y/λfλ
i (y) dy. We can

use (2.53) to show that the solution to (2.50) is unique, and so fλ
i is the law of Aλ given

X0 = i. �
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2.8 Proofs of Theorem 2.5 and Theorem 2.6

Note firstly that hkλ(z) as defined by (2.38) and (2.39) satisfies

hkλ(z) = pke
z
E

(

1− exp
{

−z(1− e−λWk
1 )
}

)

. (2.72)

Then (2.40) can be seen simply to express Aλ conditional on ξ1, as in

Aλ =
(

1− e−λWk
1
)

ek + e−λWk
1 Ãλ, w.p. pk, (2.73)

where Ãλ also has the Aλ distribution and is independent of the W1’s, and ek is the

unit positive vector in the kth direction. Rewriting (2.40) in terms of the moments (µn)

of v⊤Aλ, we derive that

µn = −
(

m
∑

k=1

ϕk(nλ)
)−1 n−1

∑

r=0

(

n

r

)

µr

n−r
∑

s=0

(

n− r
s

)

(−1)s
m
∑

k=1

vn−r
k ϕk

(

(r + s)λ
)

. (2.74)

The symmetry property therefore gives us the moments, and as is well known (for a

bounded distribution) sufficient unto the law are the moments thereof. �

Now we turn our attention towards Theorem 2.6. For motivation and further

explanation of excursion theory, see Part VI.8 of Rogers and Williams [33]. Let ǫ be

positive. We aim to approximate Aλ by a Theorem 2.5type scenario by discarding all

jumps of the ρprocess of size less than ǫ. Formally we write

ρǫk(t) :=
∑

u6t

△ρk(u)I(△ρk(u) > ǫ),

ρǫ(t) :=
m
∑

k=1

ρǫk(t),

and Aǫ
λ(k) :=

∑

t

e−λρǫ(t−)
(

1− e−λ△ρǫ
k(t)
)

.

In the language of Theorem 2.5, pk = µk[ǫ,∞]/µ[ǫ,∞] where µ =
∑

k µk, and

ϕǫ
k(λ) = pk

∫

[ǫ,∞]

(1− e−λx)µk(dx)/µk[ǫ,∞], (2.75)

and
m
∑

k=1

eαvkEhǫ,kλ

(

α(v⊤Aǫ
λ − vk)

)

= 0. (2.76)



2.8 Discounted Functionals 43

We can renormalise the ϕǫ so that ϕǫ
k(λ) =

∫

[ǫ,∞]
(1− e−λx)µk(dx), and then

|ϕǫ
k(λ)− ϕk(λ)| =

∫

(0,ǫ)

(1− e−λx)µk(dx), and (2.77)

|hǫ,kλ (z)− hkλ(z)| 6
∫

(0,ǫ)

(

ez − eze−λx
)

µk(dx) 6 zez
∫

(0,ǫ)

(1− e−λx)µk(dx).(2.78)

Thus hǫ,kλ → hkλ uniformly on bounded intervals. Writing

Aǫ
λ(k) =

∑

t:△ρk(t)>0

I(△ρ(t) > ǫ)
(

e−λρǫ(t−) − e−λρǫ(t)
)

,

and 1−Aǫ
λ(k) =

∑

t:
△ρ(t)>0
△ρk(t)=0

I(△ρ(t) > ǫ)
(

e−λρǫ(t−) − e−λρǫ(t)
)

,

and applying Fatou’s lemma to each line gives us that Aǫ
λ(k) → Aλ(k) as ǫ goes to

0 (almost surely). Combining this, the control on hǫ and the Bounded Convergence

Theorem, we can take the limit of (2.76) to obtain (2.40). The remarks around (2.74)

still apply to show that Aλ is determined by the symmetry equation. Finally using

equations (2.39) and (2.40) and carefully integrating by parts, we see that

hkλ(z) =

∫

(0,∞]

(

ez − eze−λs)

µk(ds) =

∫ ∞

0

zλe−λseze
−λs

µk[s,∞] ds, (2.79)

whence we can deduce (2.44). �



Chapter Three
Asymmetric Markov chains

You can only find truth with logic if you

have already found truth without it.

G. K. Chesterton, The Man who was Orthodox

44
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3.1 Introduction and abstract

In Chapter One we began a study of Abel averages, Aλ(i) := λ
∫∞

0
e−λtIi(Xt) dt, as

opposed to the oftstudied Cesàro averages Ct(i) := t−1
∫ t

0 Ii(Xs) ds. In Chapter Two,

we studied the largedeviation behaviour of these averages. In the case where X is an

irreducible Markov chain on a finite statespace S = {1, . . . , n}, we observed that

Ct → π as t→∞,

and Aλ → π as λ ↓ 0,

where π is the invariant distribution of X . We noted that

lim
t→∞

t−1 logE exp
{

∫ t

0

v(Xs) ds
}

= δ(v), (3.1)

where v is an nvector, δ(v) := sup{Re(z) : z ∈ spect(Q + V )}, and where spect(·)
denotes spectrum (here the set of eigenvalues), Q is the Qmatrix of X , and V denotes

the diagonal matrix diag(vi). It is also true that the largedeviation property holds for

Ct with rate function I defined on M := {(xi)i∈S : xi > 0,
∑

j xj = 1}. That is that

lim sup
t→∞

t−1 logP(Ct ∈ F ) 6 − inf
x∈F

I(x),

and lim inf
t→∞

t−1 logP(Ct ∈ G) > − inf
x∈G

I(x),
(3.2)

for F and G respectively closed and open subsets of M . These two limits, δ and I , are

related by convex conjugation (Legendre transform), in that

I(x) = δ∗(x) := sup
v∈Rn

{

∑

i

vixi − δ(v)
}

,

and δ(v) = I∗(v) := sup
x∈M

{

∑

i

vixi − I(x)
}

.
(3.3)

In Chapter Two we were able to derive similar results for the Abel average when X

was symmetrisable. We can now extend this result both to the general X , and also to

the family of discounted averages, Gγ , parameterised by γ > 0, where

Gγ
t (i) := t−1(1 + γ)

∫ t

0

(1− s/t)γ Ii(Xs) ds, (3.4)

and Gγ
t → π as t→∞.
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3.2 The results

We first extend Theorem 2.1 of Chapter Two to all (including asymmetric) finite chains

Theorem 3.1 Let X be an honest irreducible finitestate Markov chain, with Qmatrix Q.

Then, irrespective of where X starts

lim
λ↓0

λ logE exp
{

∫ ∞

0

e−λtv(Xt) dt
}

= η(v) :=

∫ 1

0

α−1δ(αv) dα, (3.5)

and the largedeviation property holds for Aλ with rate K := η∗, and η = K∗.

Proof of Theorem 3.1 Our programme is essentially to follow the proof in Chapter

Two, but is complicated by the asymmetry of Q breaking the usual link between the

spectrum of Q and its action as a bilinear form 〈·, Q·〉, where 〈·, ·〉 is the standard inner

product on R
n.

As in Chapter Two we define

Bλ :=

∫ ∞

0

e−λtv(Xt) dt,

and ϕi(α, λ) := Ei(e
αBλ),

and deduce from applying Itô’s formula to the martingale Mt := E(exp(αBλ)|Ft) that

αλ
∂ϕ

∂α
= (Q+ αV )ϕ. (3.6)

We again discount ϕ by defining ψ by

ψi(α, λ) := ϕi(α, λ) exp
{

− 1

λ

∫ α

0

β−1δ(βv) dβ
}

,

which satisfies the differential equation

αλ
∂ψ

∂α
= −R(α)ψ, (3.7)

where R(α) := δ(αv)I − (Q + αV ) has a spectrum with nonnegative real part. Our

solution to this equation follows from facts deriving from the PerronFrobenius The

orem about nonnegative or essentially nonnegative (nonnegative off the diagonal)

matrices. These may be found in I.7 of Kato [24] or Seneta [34]. The points we shall
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use most are as follows. A nonnegative matrix has a maximal modulus eigenvalue

which is real and positive, and whose corresponding eigenvector is nonnegative. If

the matrix is irreducible (in the stochastic sense) the eigenvalue is simple and the

eigenvector is both positive and the only nonnegative eigenvector.

In the symmetric case we could decompose R into acting on orthogonal eigen

spaces with all but the zero eigenvalue positive. In the general asymmetric case, we

still have all but one eigenvalue positive, but the matrix need not be diagonalisable

and the eigenspaces are not all mutually orthogonal. Nevertheless, we can produce a

partial orthogonal decomposition by adapting theorem I.7.13 of Kato [24] to give the

following.

Theorem 3.2 (Adapted from Kato) Let T be an essentially nonnegative and irreducible

matrix. Let δ be its principal eigenvalue. Then there exists a real diagonal matrix F with

positive elements such that S := F−1TF −δI has a simple eigenvalue zero, with an orthogonal

eigenprojection P , and that, for some positive σ

〈Sx, x〉 6 −σ‖(I − P )x‖2. (3.8)

Proof of Theorem 3.2 Following Kato exactly at this stage, we may assume that T is

nonnegative, and we know that there exist strictly positive eigenvectors y and y∗ of T

and T⊤ respectively, both with the maximal eigenvalue δ. We set F to be the diagonal

matrix diag(
√

yi/y∗i ), z to be the vector (zi) = (
√

yiy∗i ), andB the nonnegative matrix

F−1TF . Then Bz = B⊤z = δz, and so z is the strictly positive eigenvector of the

symmetric nonnegative matrixB⊤B with associated eigenvalue δ2 which is maximal.

Kato’s theorem I.6.49 tells us that P , the eigenprojection for B associated with z, is

selfadjoint and so orthogonal. As I = P ⊕ (I − P ) is orthogonal we can decompose

R
n as V+ ⊕ V−, the orthogonal sum of two B and B⊤ invariant subspaces. Let B− be

the restriction of B to V−, and then (B⊤B)− = (B−)⊤(B−) and the second greatest

eigenvalue of B⊤B (which is real and positive) is the greatest eigenvalue of (B⊤B)−

and is strictly less than δ2. We shall call this eigenvalue δ2
−. We have ‖(B⊤B)−‖ = δ2

−,

so ‖B−‖ = δ−, and

〈Bx−, x−〉 6 δ−‖x−‖2, where x− = (I − P )x,

and 〈Bx+, x+〉 = δ‖x+‖2, where x+ = Px.
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Now S = F−1TF − δI = B − δI , so we have

〈Sx, x〉 = 〈Sx+, x+〉+ 〈Sx−, x−〉 6 −(δ − δ−)‖x−‖2,

and the result is proved with σ set equal to δ − δ−, which is positive. �

We now apply Theorem 3.2 with T = T (α) = Q + αV and δ equal to δ(αv).

So, for each α in [0, 1], there exist F (α), P (α), S(α), and σ(α) as in the theorem. We

choose y(0) = 1 and y∗(0) = π, the invariant distribution of Q. By Kato [4] II.1–4, the

functions δ(αv), y(α), y∗(α) and P (α) are (or can be chosen) smooth in α, and δ−(α)

is at least continuous. We deduce that F (α) is smooth, and σ(α) is continuous, so is

bounded away from 0 by some positive σ0 for all α in [0, 1].

Changing bases appropriately we set

χ(α, λ) := F−1(α)ψ(α, λ),

so that ‖χ(0, λ)‖ = 1, and transform (3.7) into

αλ
∂χ

∂α
= S(α)χ(α, λ) + αλG(α)χ(α, λ), (3.9)

whereG(α) := −F ′(α)F−1(α) is diagonal, and because S = −F−1RF . We can bracket

the line above with χ to find that

αλ∂α〈χ, χ〉 = 2〈χ, Sχ〉+ 2αλ〈χ,Gχ〉,

and so

∂α〈χ, χ〉 6 2KG〈χ, χ〉,

where KG := supα ‖G(α)‖. We deduce that

∂α(exp(−2KGα)〈χ, χ〉) 6 0,

and so

〈χ, χ〉(α, λ) 6 exp(2KGα) 6 Kχ (3.10)

for all α in [0, 1] and all positive λ. Writing

χ = χ+ + χ−, (χ−(0, λ) = 0),

then αλχ′
− = Sχ− + αλ

(

(I − P )G− P ′)χ.
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We can get a bound on χ− using a similar method to that used for the universal bound

on χ, to see that

∂α〈χ−, χ−〉 6 −
2σ0

αλ
〈χ−, χ−〉+K1,

where K1 = (KG +KP )Kχ and KP = supα ‖P ′(α)‖, and hence

∂α

(

〈χ−, χ−〉α2σ0/λ
)

6 K1α
2σ0/λ.

Whence we find by integrating that

〈χ−, χ−〉(α, λ) 6 λ
K1α

2σ0 + λ
6 K2λ, for λ > 0, α ∈ [0, 1]. (3.11)

Finally we consider χ+, the part of χ annhilated by S, for which

∂αχ+ = (P ′ + PG)χ+ + (P ′ + PG)χ−,

and writing χ+(α, λ) as ξ(α, λ)z(α), so that ξ(0, λ) = 1, we see that

ξ′z = −ξPF−1(Fz)′ + (P ′ + PG)χ−.

Now if we replace y by y(α) exp(−
∫ α

0 〈y′, y∗〉〈y, y∗〉−1(β) dβ) to ensure that 〈y′, y∗〉 = 0,

and similarly for y∗, we then have ‖z(α)‖ = 1 and PF−1(Fz)′ = 0. This simplifies the

previous differential equation to

ξ′z = (P ′ + PG)χ−,

and so |ξ′(α, λ)| 6 (KP +KG)
√

K2λ.
(3.12)

Thus limλ↓0 χ(α, λ) = z(α), and limλ↓0 ψ(α, λ) = F (α)z(α) = y(α) which is strictly

positive, so the first part of the result holds.

Note. In the symmetric case, y∗(α) = diag(π)y(α) for all α, and z(α) = diag(
√
π)y(α).

Thus the ‖z‖ = 1 normalisation condition is just the previous ‖y‖π = 1 normalisation,

where 〈u, v〉π =
∑

i πiuivi.

For the largedeviation result, as in Chapter Two, we use theorem II.2 of Ellis [18]

with Yλ(i) :=
∫∞

0 e−λtIi(Xt) dt, and c := η. The fact that η = K∗ comes from the

duality of convex conjugation coupled with η inheriting the convexity of δ. �
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In fact, we now have enough to consider another average, if for no other reason

than to emphasise the point that each average we can think of has different large

deviation behaviour. We look at the “γdiscounted” average (γ > 0) defined by (3.4)

Gγ
t (i) := t−1(1 + γ)

∫ t

0

(1− s/t)γ Ii(Xs) ds.

Then we can replicate our previous work with the following.

Theorem 3.3 Let X be an honest irreducible finitestate Markov chain, with Qmatrix Q.

Then, irrespective of where X starts,

lim
t→0

t−1 logE exp
{

(1 + γ)

∫ t

0

(1− s/t)γ v(Xs) ds
}

= δγ(v) :=

∫ 1

0

δ((1 + γ)αγv) dα,

(3.13)

and Gγ
t has the large deviation property with rate Iγ := δ∗γ , and δγ = I∗γ .

Proof of Theorem 3.3 If γ = 0, G0
t is just the Cesàro average Ct for which we already

have the result, so we now assume that γ > 0. We define

ϕi(α, t) := Ei exp
{

α(1 + γ)

∫ t

0

(1− s/t)γ v(Xs) ds
}

,

and define Mu to be the martingale

Mu : = E

(

exp
{

α(1 + γ)

∫ t

0

(1− s/t)γ v(Xs) ds
} ∣

∣

∣
Fu

)

= exp
{

α(1 + γ)

∫ u

0

(1− s/t)γv(Xs) ds
}

ϕXu

(

α(1− u/t)γ, t− u
)

.

Applying Itô’s formula to the second line above, we deduce that

αγ

t

∂ϕ

∂α
+
∂ϕ

∂t
= (Q+ α(1 + γ)V )ϕ. (3.14)

We now define the discounted function ψ as

ψi(α, λ) := ϕi(α, α
1/γ/λ) exp

{

−λ−1

∫ α1/γ

0

δ((1 + γ)βγv) dβ
}

,

which satisfies the differential equation

λγα1−1/γ ∂ψ

∂α
= −R(α(1 + γ))ψ. (3.15)
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This is solved in exactly the same way as we solved (3.7) in Theorem 3.1, with the

only exception being on the bound of 〈χ−, χ−〉 which is derived from the differential

inequality

∂α〈χ−, χ−〉 6 −
2σ0α

1/γ

λγα
〈χ−, χ−〉+K1.

From which we deduce that

∂α

(

〈χ−, χ−〉 exp(2σ0α
1/γ/λ)

)

6 K1 exp(2σ0α
1/γ/λ),

and hence by integrating that

‖χ−‖2(α, λ) 6 K1

∫ α

0

exp
(

−2σ0(α
1/γ − β1/γ)/λ

)

dβ.

The righthand side of this expression tends to 0 uniformly on α in [0, 1] as λ ↓ 0. The

rest goes through as before to show that limλ↓0 ψi(α, λ) = y(α), and hence that

lim
t→∞

t−1 logϕi(1, t) =

∫ 1

0

δ((1 + γ)αγv) dα. �



Chapter Four
General discounts

All philosophers who find

Some favourite system to their mind,

In every point to make it fit

Will force all nature to submit.

Jonathan Swift

52
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4.1 Introduction

In this Chapter we will push forward the three major strands of inquiry that we have

developed in the proceeding Chapters. The generality that we will obtain should be

sufficient to satisfy the demands of a reader just searching for a convenient theorem,

though reference will be made to earlier sections when a proof is essentially the same

as one before.

In the next Section, we investigate symmetry characterizations and distribution

asymptotics for the Abel discounted occupation times of OrnsteinUhlenbeck pro

cesses. This is in the spirit of Chapter One, which studied the Brownian motion case

(itself a driftless OrnsteinUhlenbeck process), and also of Section 2.4 of Chapter Two,

which looked at subordinators. The two important results from these Chapters are

recapped to aid the casual reader and to reintroduce the concepts that we shall use.

For general results about the largedeviations behaviour of discounted occupa

tion times of processes, in Section 4.3 we will build on Section 2.1 of Chapter Two

and on Chapter Three. Previously we knew that the largedeviation property held

for the Abel discounted average of a general finitestate Markov chain, and we will

fully extend this to completely general discounts of chains and partially extend further

to a wide class of Markov processes. We discover that although the largedeviation

rate function of the discounted average can be written in terms of that for the Cesàro,

the rate is often different for a different discount. We also derive results about the

smoothness and finiteness of the rate function which are used in the next Section to

prove a central limit theorem.

Finally we shall go beyond the limited approximation precision of the large

deviation property and give an asymptotic expansion of the density of the distribution

itself, following from the density studies of Section 2.2. This again is now performed

for general discounted averages of finitestate Markov chains. We also notice a pattern

in the differential equations we worked with, and hypothesize about their full solutions

and other generalizations.



4.2 General discounts 54

4.2 Symmetry Characterizations

The initial results of this section have previously appeared in Chapters One and Two,

but are reproduced here to give the beginnings of the story. They also provide us with

our only exact handle on the behaviour of the discounts for diffusions and related

processes.

We start by recalling that a subordinator (an increasing Lévy process) ρ is a right

continuous process {ρt : t > 0} with nondecreasing paths and with stationary inde

pendent increments and such that ρ0 = 0. If ρ is a subordinator, then for some constant

c > 0 and some (Lévy) measure µ on (0,∞], we have for γ > 0,

E exp{−γρ(t)} = exp{−tϕ(γ)},

where ϕ(γ) = cγ +

∫

(0,∞]

(1− e−γℓ)µ(dℓ).

Then ρ(t) = ct+
∑

s6t

(∆ρ)(s), (∆ρ)(s) := ρ(s)− ρ(s−),

and the number of jumps of size greater than ℓ made by ρ during timeinterval [0, t]

is Poisson with parameter tµ[ℓ,∞]. We allow ρ to make infinite jumps; and of course

ρ = ∞ from the time of the first infinite jump on. We call our subordinator ρ driftless

if c = 0.

We suppose that (ρk)
m
k=1 are independent driftless subordinators, and let ρ(t) :=

∑m
k=1 ρk(t). The idea is that we have a process X = {Xt : 0 < t <∞} such that

X = k on
[

ρ(t−), ρ(t)
)

and △ρ(t) = △ρk(t), if△ρk(t) > 0.

Then the discounted occupation measure Aλ is given by

Aλ(k) :=

∫ ∞

0

λe−λtIk(Xt) dt =
∑

t

exp
(

−λρ(t−)
)

(

1− exp
(

−λ△ρk(t)
)

)

.

Theorem 4.1 Suppose that (ρk), ρ and Aλ are as above, and that each ρk can be represented

as

E exp
{

−γρk(t)
}

= exp
{

−tϕk(γ)
}

, (4.1)

ϕk(γ) =

∫

(0,∞]

(

1− e−γℓ
)

µk(dℓ), (4.2)
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and define hkλ(z) :=
∞
∑

n=0

ϕk(nλ)z
n

n!
, (4.3)

whereupon hkλ(z) =

∫ 1

t=0

zeztµk

[

λ−1 log(1/t),∞
]

dt. (4.4)

Then, for a mvector v, the distribution of v⊤Aλ is characterized by the following identity

m
∑

k=1

exp(αvk)Eh
k
λ

(

α(v⊤Aλ − vk)
)

= 0. (4.5)

Proof of Theorem 4.1 Theorem 2.6 of Chapter Two. �

As in Chapter Two, we can apply Theorem 4.1 to a wellbehaved diffusion process

X on R with local time Lt at 0. We define two subordinators ρ1 and ρ2 as

τt := inf{u : Lu > t}, ρ1(t) := Leb{s 6 τt : Xs > 0}, ρ2(t) := Leb{s 6 τt : Xs < 0},

where Leb is the Lebesgue measure on R. It is known that ρ1 and ρ2 are independent,

so the discounted occupation of the positive halfline,

Aλ(1) =

∫ ∞

0

λe−λtI(0,∞)(Xt) dt,

can be characterized by the equation

Eh2
λ(αAλ(1)) = −eαEh1

λ

(

−α(1−Aλ(1))
)

. (4.6)

The functions h1
λ and h2

λ are defined via (4.4), where µ1 and µ2 are the Lévy measures

on (0,∞] describing the length of excursions from 0 into R
+ and R

− respectively.

In the particular case of Brownian motion, we have that h1
λ and h2

λ have the

common value

hλ(z) =
√
λ

∫ 1

0

zezt
√

log 1/t
dt,

so that (4.6) becomes Theorem 1.2 of Chapter One. Finally we can use this symmetry

relation to derive asymptotic results about the distribution ofAλ (which is independent

of λ).

Theorem 4.2 The distribution function F of A satisfies the asymptotic relation

F (x) ∼ 2
√
x

π
√
(log 1/x)

as x ↓ 0. (4.7)
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And the moments (µn) of A satisfy

µn ∼ (πn logn)−
1
2 as n→∞. (4.8)

(Where the symbol ∼ indicates that the ratio of the sides converges to 1.)

Proof of Theorem 4.2 Theorem 1.1 of Chapter One. �

We can also perform these calculations for processes which can be written as

deterministic time/scalechanges of Brownian motion, such as the Brownian bridge

and OrnsteinUhlenbeck processes. Let us recall that the Brownian bridge Xt can be

defined either as the unique solution to the stochastic differential equation (SDE)

dXt = dBt −
Xt

1− t dt, X0 = 0, (4.9)

or explicitly as a process with the same distribution as

Xt = (1− t)B
(

t/(1− t)
)

, t ∈ [0, 1], (4.10)

where B is a Brownian motion. The OrnsteinUhlenbeck (OU) process, Yt, starting at

0, is governed by the SDE

dYt = dBt − 1
2γYt dt, (4.11)

but can also be expressed as

Yt = e−γt/2B
(

(eγt − 1)/γ
)

, (4.12)

where B is again a Brownian motion. Note further that the Cesàro average of the

Brownian bridge can be written as

∫ 1

0

I(0,∞)(Xt) dt =

∫ ∞

0

1

(1 + t)2
I(0,∞)(Bt) dt,

and the Abel averages of the OU process can be written as

∫ ∞

0

λe−λtI(0,∞)(Yt) dt
D
=



















∫ ∞

0

λ/γ

(1 + t)1+λ/γ
I(0,∞)(Bt) dt if γ > 0,

∫ 1

0

λ

|γ|(1− t)
λ/|γ|−1I(0,∞)(Bt) dt if γ < 0.
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We observe both that the Abel average of a positive recurrent OU process at discount

rate λ = γ has the same distribution as the Cesàro average of the Brownian bridge,

and that the Abel average of a transient OU process at discount rate λ = |γ| has the

same distribution as the Cesàro average of Brownian motion.

Theorem 4.3 (1) Let Fβ be the distribution of the average

Aβ :=

∫ ∞

0

1

β(1 + t)1+1/β
I(0,∞)(Bt) dt, (β > 0) (4.13)

then Fβ(x) ∼ cβx
1
2 (1+β) as x ↓ 0, for some positive constant cβ .

(2) Let F−β be the distribution of the average

A−β :=

∫ 1

0

β−1(1− t)(1/β)−1I(0,∞)(Bt) dt, (β > 0) (4.14)

then F−β(x) ∼ 2
√
βx/π as x ↓ 0.

Note: The family of distributions (Fβ) is actually continuous in β at 0, with F0 being

the distribution of the exponential discount of Brownian motion itself.

Proof of Theorem 4.3 Following the approach of Chapter One, we can bound Aβ

above and below by expressions involving the Cesàro average of Brownian motion

itself,

Ct :=
1

t

∫ t

0

I(0,∞)(Bs) ds,

which we know to have the arcsine distribution F−1(x) = P(Ct 6 x) = 2
π sin−1√x.

These bounds are summarized in the following lemma:

Lemma 4.4 With Fβ defined as above

2

π
(1 + 1/β)−

1
2 (1+β) 6 lim

x↓0

Fβ(x)

x
1
2 (1+β)

6 lim
x↓0

Fβ(x)√
x

6
2

π
(1 + β)

1
2 (1+1/β),

2
√
β

π
6 lim

x↓0

F−β(x)√
x

6 lim
x↓0

F−β(x)√
x

6
2

π
(1− β)−

1
2 (1/β−1),

2

π
(1− 1/β)−

1
2 (β−1) 6 lim

x↓0

F−β(x)√
x

6 lim
x↓0

F−β(x)√
x

6
2
√
β

π
,

where the first line holds for all positive β, the second for all β in (0, 1), and the third for all β

in (1,∞). Here lim and lim are used to denote lim inf and lim sup respectively.
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Proof of Lemma 4.4 Fix β positive. For every t,

Aβ >
1

β(1 + t)1+1/β

∫ t

0

I(0,∞)(Bs) ds =
tCt

β(1 + t)1+1/β
,

so Fβ(x) = P(Aβ 6 x) 6 P(Ct 6 βx(1 + t)1+1/β/t) = 2
π sin−1

√

βx(1 + t)1+1/β/t. The

minimum value of β(1 + t)1+1/β/t is achieved at t = β, and the upper bound for Fβ

follows.

For every t,

Aβ 6 β−1

∫ t

0

I(0,∞)(Bs) ds+
1

(1 + t)1/β
= β−1tCt +

1

(1 + t)1/β
,

so Fβ(x) = P(Aβ 6 x) > P(Ct 6 β(x − (1 + t)−1/β)/t). The maximum value of

β(x− (1+ t)−1/β)/t is asymptotically the same as (x/(1+ 1/β))1+β , whence the lower

bound for Fβ . The other two pairs of bounds are similar. �

The corresponding excursion length measures for the diffusions are

µ[t,∞] = t−
1
2 Brownian motion,

µγ [t,∞] =

(

eγt − 1

γ

)− 1
2

OU process.

Hence

hβ(z) =

∫ 1

0

zeztµ(γ=βλ)[λ
−1 log(1/t),∞] dt =



















∫ 1

0

zezt dt√
t−β − 1

if β > 0,

∫ 1

0

zezt dt√
1− t−β

if β < 0.

(4.15)

We can use this to verify that the Cesàro average of a bridge has the uniform distribution

merely by checking that the αn+1 components of Eh1(αX) and −eαEh1(−αX) agree

for each n > 0, where X is uniform. That is, confirming that

∫ 1

0

∫ 1

0

xn+1tn√
t−1 − 1

dx dt =

∫ 1

0

∫ 1

0

x(1− xt)n√
t−1 − 1

dx dt.

Generally, we can investigate the behaviour of Fβ near 0, but we need to discover the

asymptotics of the functions hβ , which is done in the subsequent lemma:
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Lemma 4.5 With hβ as defined above

hβ(z) ∼
√

πz

|β|e
z as z → +∞,

−hβ(−z) ∼
{

Γ(1 + β/2)z−β/2 if β > 0
1 if β < 0

as z → +∞.

Proof of Lemma 4.5 Firstly

hβ(z) =

∫ 1

0

zezt dt
√

|t−β − 1|
=
√
zez

∫ z

0

e−u du
√

z|(1− u/z)−β − 1|
.

Now z|(1− u/z)−β − 1| > (1 ∧ |β|)u, and the lefthand side of this inequality tends to

|β|u as z goes to infinity. Hence by the Dominated Convergence theorem, we have the

first line of the result.

Secondly, if β is positive, then

−hβ(−z) = z−β/2

∫

√
z

0

uβ/2e−u du
√

1− (u/z)β
+

∫ 1

1/
√
z

ze−zt

√
t−β − 1

.

The latter of the righthand side terms is bounded by ze−
√
z
∫ 1

0 (t
−β − 1)−

1
2 dt, which

is of smaller order than z−β/2 as z goes to infinity. The integrand of the former term is

dominated by uβ/2e−u(1− z−β/2)−
1
2 and tends to uβ/2e−u as z goes to infinity.

If β is negative, then we can similarly decompose −hβ(−z) as

−hβ(−z) =
∫

√
z

0

e−u du
√

1− (u/z)|β|
+

∫ 1

1/
√
z

ze−zt

√
1− t|β|

dt,

whence the result. �

We see from (4.6) that e−α
Ehβ(αAβ) = −Ehβ(−αAβ). We can prove in exactly

the same way as in Chapter One that

Ehβ(αAβ) ∼
√

πα/|β|eαE(e−αAβ ), as α→∞. (4.16)

If β is negative then −hβ(−αAβ) tends to 1 as α goes to infinity, and as hβ is bounded

on R
−, we can deduce that −Ehβ(−αAβ)→ 1. Hence

E(e−αAβ ) ∼
√

|β|
πα

as α→∞,

and Fβ(x) ∼
2

π

√

|β|x as x ↓ 0.

(4.17)
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Here we are using a Tauberian theorem adapted from (§8, 5.3) of Widder [38], which

says that for a nonnegative random variable X with distribution function FX ,

Ee−αX ∼ k

αγ
as α→∞ ⇒ FX(x) ∼ kxγ

Γ(γ + 1)
as x ↓ 0, (4.18)

for positive constants γ and k.

For β positive, life is harder. Set I to be the set of ‘good’ values of β. That is

I := {β > 0 : Fβ(x) ∼ cβx
1
2 (1+β)}.

Lemma 4.6 Fix β positive. If Fβ(x) 6 kxγ , for some γ > β/2, and some k > 0, then β is

in I .

Proof of Lemma 4.6 For any positive ǫ, choose K large enough so that

|Γ(1 + β/2) + zβ/2hβ(−z)| < ǫ, (z > K).

Then

−Ehβ(−αAβ) = E(−hβ(−αAβ);Aβ < K/α) + E(−hβ(−αAβ);Aβ > K/α)

=: E1(α) +E2(α).

Now 0 6 E1(α) 6 (sup−hβ(−x))Fβ(K/α) 6 cα−γ . Also

E(A
−β/2
β ) =

∫ 1

0

x−β/2 dFβ(x) =
[

x−β/2Fβ(x)
]1

0
+ 1

2β

∫ 1

0

x−(1+β/2)Fβ(x) dx

6 (1− 0) + 1
2kβ

∫ 1

0

x(γ−β/2)−1 dx <∞.

So hence E2(α) looks like α−β/2(Γ(1 + β/2)± ǫ)E(A−β/2
β ), as α gets large, and thus E2

dominates E1. So we have that

E− hβ(−αAβ) ∼ Γ(1 + β/2)E(A
−β/2
β )α−β/2. (4.19)

And thus

E(e−αAβ ) ∼
√

β

π
Γ(1 + β/2)E(A

−β/2
β )α− 1

2 (1+β) as α→∞,

and so by (4.18) Fβ(x) ∼
2

π

√

βΓ(1 + β/2)E(A
−β/2
β )x

1
2 (1+β) as x ↓ 0,

(4.20)
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that is, that β is in I . �

We can now complete the proof of Theorem 4.3. From Lemma 4.4, we have that

Fβ is dominated by x
1
2 , so Lemma 4.6 tells us that the interval (0, 1) is contained in I .

Now for δ < β,

1

β(1 + t)1+1/β
>
δ

β

1

δ(1 + t)1+1/δ
, for all t.

So Aβ > (δ/β)Aδ , and hence Fβ(x) 6 Fδ(xβ/δ). Now if δ is already in I and β is in

the open interval (δ, 1 + δ), then Fβ is dominated by Fδ ≈ x
1
2 (1+δ), and so β is in I by

Lemma 4.6. Thus the theorem is proved. �

As we have seen before, A0 is the distribution of the Abel average of Brownian

motion, A−1 is the distribution of the Cesàro average of Brownian motion (the arcsine

distribution), and A1 is the distribution of the Cesàro average of the Brownian bridge

(the uniform distribution). For an OrnsteinUhlenbeck process with parameter γ as in

(4.11), its Abel average at rate λ has the distribution ofAβ where β = γ/λ. As λ goes to

0, or equivalently as |γ| goes to infinity, Aβ tends either to the symmetric distribution

on the endpoints {0, 1} or to the point 1
2 , according to whether the process is transient

or recurrent. We can summarize this information with the aid of the following diagram

of the ‘βspectrum’.

{0, 1}
•
−∞

BMotion

Cesàro

•
−1

BMotion

Abel

•
0

BBridge

Cesàro

•
1

{1/2}
• →
∞ βline

We note that amongst symmetric distributions on [0, 1], A−∞ has the greatest

variance, and A∞ has the least. We shall see evidence shortly that the variance is

decreasing in β. By equating coefficients of α in Ehβ(αAβ) = −eαEhβ(−αAβ), we see

that

∫ 1

0

fβ(x)

∫ 1

0

x(xt)n
√

|t−β − 1|
dx dt =

∫ 1

0

fβ(x)

∫ 1

0

x(1− xt)n
√

|t−β − 1|
dx dt, (4.21)
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where fβ is the density of Fβ . Now we can perform the tintegration as follows

∫ 1

0

tr−1 dt
√

|t−β − 1|
=























1

β

∫ 1

0

ur/β−
1
2 (1− u)−

1
2 du =

Γ( rβ + 1
2 )Γ(

1
2 )

rΓ( rβ )
if β > 0,

1

|β|

∫ 1

0

ur/|β|−1(1− u)−
1
2 du =

Γ( r
|β| + 1)Γ( 1

2 )

rΓ( r
|β| +

1
2 )

if β < 0.

(4.22)

Hence we can deduce a generalization of (1.17) of Chapter One.

Proposition 4.7 Fix β real. Let µn be the nth moment of Aβ . Then

µn =

n
∑

k=0

(

n

k

)

(−1)kµk and Mnµn =

n
∑

k=1

(

n

k

)

(−1)k+1Mkµk,

where Mn :=











Γ(n
β +

1
2 )

Γ(n
β ) if β > 0,

Γ( n
|β|

+1)

Γ( n
|β|

+
1
2 )

if β < 0.

Proof of Proposition 4.7 Follows immediately from the symmetry of Aβ and from

(4.21) and (4.22). �

This allows us to calculate the variance explicitly as

Var(A−β) =
1

4

(

Γ( 1
β )Γ(

2
β + 1

2 )

Γ( 1
β + 1

2 )Γ(
2
β )
− 1

)

,

Var(Aβ) =
1

4

(

2Γ( 1
β + 1

2 )Γ(
2
β )

Γ( 1
β )Γ(

2
β + 1

2 )
− 1

)

.

Were Aβ to be a member of the beta family of distributions, with densities

fβ1,β2
(x) =

Γ(β1 + β2)

Γ(β1)Γ(β2)
xβ1−1(1− x)β2−1,

then the symmetry ofAβ together with the asymptotics of Theorem 4.3 would giveAβ

the Beta( 1
2(1 + β), 1

2 (1 + β)) distribution for positive β and the Beta( 1
2 ,

1
2 ) distribution

(arcsine) for negative β. Let us let Bβ be this hypothesised distribution, that is it

has the symmetric Betadistribution with parameter 1
2 for negative β and parameter

1
2 (1 + β) for positive β.
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Figure 4.1 Graphs of Var(Aβ) (smooth) and Var(Bβ) (crooked) against β

Making a graph of the variances numerically (Figure 4.1, drawn by Mathematica)

we can believe that although Var(Aβ) is indeed decreasing in β, it only intersects with

the hypothesized beta distribution variance at the points β = ±1, the two points which

are already known, and at no others. Identification of the other distributions involved

remains an open question.

4.3 Large Deviations

We now work with general discount shapes and positive recurrent processes. Let X

be a stochastic process with statespace E and invariant distribution π. In the Cesàro

case we would expect some sort of ergodic theorem such as

Ct(F ) :=
1

t

∫ t

0

IF (Xs) ds→ π(F ) as t→∞, (4.23)

for all measurable subsets F of E. Then Ct takes values in M1(E), the space of

probability measures onE. We might also have a largedeviation result, which we can

think of for the moment as the slogan

“P(Ct ∈ H) ≈ exp
(

−t inf
ν∈H

I(ν)
)

as t→∞ ” H ⊂M1(E),

for some rate function I , with I(π) = 0. The spaceM1(E) and the continuous bounded

functions on E, Cb(E) are in duality via the bracket, 〈v, ν〉 =
∫

E
v(x)ν(dx). A related

slogan is that of the Laplace transform

“E exp
(

〈v, Ct〉t
)

≈ exp
(

tδ(v)
)

as t→∞ ” v ∈ Cb(E),
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where δ and I are related by Legendre transformation (convex conjugation), in that

I(ν) = δ∗(ν) := sup
v∈Cb(E)

(

〈v, ν〉 − δ(v)
)

, (4.24)

δ(v) = I∗(v) := sup
ν∈M1(E)

(

〈v, ν〉 − I(ν)
)

, (4.25)

Our program will be to study, for a discount density m, the average

Aλ(F ) :=

∫ ∞

0

λm(λt)IF (Xt) dt. (4.26)

We will show that Aλ → π as λ goes to 0, and that the largedeviation principle holds

with rate K whose Legendre transform η is given by the equation

η(v) =

∫ ∞

0

δ
(

m(t)v
)

dt. (4.27)

This is actually the same as the ηequation at (2.16) in Chapter Two (with discount

mt = e−t) and at Theorem 3.3 (with discount mt = (1+ γ)(1− t)γ), but (4.27) is a more

natural formulation.

Standard setup. Let X be an ergodic FellerDynkin Markov process on a locally

compact Polish space E, with generator L. We define the Cesàro average Ct and the

general average Aλ by (4.23) and (4.26) respectively. Then Ct and Aλ converge to π,

the invariant distribution of X , with respect to the weak topology on M1(E), that is,

in the sense of (4.23). A sufficient condition for the former limit is that, as in 8.11.2 of

Bingham et al. [10], π is a limiting distribution of the transition semigroup (Pt). The

latter limit follows from the former by a similar L1continuity argument to that which

will be used in the proof of Proposition 4.8. Deuschel and Stroock [15] show that under

an assumption of uniform ergodicity the largedeviation property holds for Ct with

rate function I defined on M1(E). That is that

lim sup
t→∞

t−1 logP(Ct ∈ F ) 6 − inf
ν∈F

I(ν),

and lim inf
t→∞

t−1 logP(Ct ∈ G) > − inf
ν∈G

I(ν),
(4.28)

for F and G respectively closed and open subsets of M1(E). We learn from 4.2.17 of

Deuschel and Stroock [15] that

lim
t→∞

t−1 logE exp

∫ t

0

v(Xs) ds = δ(v), (4.29)
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where δ and I are convex functions satisfying (4.24) and (4.25). Further there are, by

4.2.27 and 4.2.38 of Deuschel and Stroock [15], explicit expressions for δ and I as

δ(v) = lim
t→∞

t−1 log ‖P v
t ‖op, where P v

t f(x) := Ex

(

exp(
∫ t

0
v(Xs) ds)f(Xt)

)

,(4.30)

I(ν) = sup

{

−
∫

E

Lf(x)

f(x)
ν(dx) : f > 1, f ∈ Dom(L)

}

. (4.31)

As in Chapter Two we shall be particularly interested in the case whereX is a Markov

chain on a finite statespace S with QmatrixQ. Then δ(v) = sup{Re(z) : z ∈ spect(Q+

V )}, where V denotes the diagonal matrix diag(v) and spect(·) denotes spectrum (here

the set of eigenvalues). This expression for δ also holds in the general Markov process

setting, if the generator L is πsymmetric.

We begin by proving a result whose first part is similar to one remarked by

Kifer [27] in the context of the largedeviations of the averages of dynamical systems,

but it is the second part which will be more useful in our further work. In earlier

Chapters we derived a differential equation by the selfsimilarity of discount shapes

such as e−t, but it is enough to study the shifts of the discount along the timeaxis,

which provides a useful onedimensional parameterisation.

Proposition 4.8 Suppose that X is an FD Markov process on a space E, with genera

tor L, and m is any density on [0,∞), and for x in E and v in Cb(E) the limit δ(v) =

limλ λ logEx exp
∫ 1/λ

0 v(Xs) ds exists uniformly in x on E. If we define ϕ by

ϕ(x, t, λ, v) = Ex exp

∫ ∞

0

θtm(λs)v(Xs) ds, (4.32)

where θt is the shift operator θtf(s) = f(t+ s), then

lim
λ↓0

λ logϕ(x, 0, λ, v) = η(v) :=

∫ ∞

0

δ(mtv) dt. (4.33)

Further, ϕ(·, t, λ, v) is in the domain of L and ϕ(x, ·, λ, v) is differentiable and

−∂ϕ
∂t

= λ−1(L+mtV )ϕ. (4.34)

Proof of Proposition 4.8 We prove the first part using continuity arguments. If we

define

H(λ, x, α) := λ logEx exp

∫ 1/λ

0

αv(Xs) ds, (4.35)
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then supx |H(λ, x, α) − δ(αv)| goes to 0 as λ does. We start by proving the general

average limit for m of the form

m =
n
∑

i=1

ciI(ai, bi),

where {(ai, bi)} are disjoint intervals in R
+ and ci > 0. Set

Y λ
i := exp

(

∫ bi/λ

ai/λ

civ(Xs) ds− λ−1(bi − ai)δ(civ)
)

, (4.36)

and define yλi (x) := ExY
λ
i . Then for λ sufficiently small |λ log yλi (x)| < ǫ uniformly in

x. Thus

Ex exp
∫∞

0
m(λt)v(Xt) dt

expλ−1
∫∞

0
δ(mtv) dt

= Ex(Y
λ

1 . . . Y λ
n ) = Ex(Y

λ
1 . . . Y λ

n−1y
λ
n(Xan/λ))

6 eǫ/λEx(Y
λ

1 . . . Y λ
n−1) 6 . . . 6 enǫ/λ,

and so we have the right upper bound. Similarly we have the lower bound.

Let us now define Iλ(m) :=
∫∞

0 m(λt)v(Xt) dt, Lλ(m) := λ logE exp Iλ(m), and

J(m) :=
∫∞

0 δ(mtv) dt. Then λ|Iλ(m1) − Iλ(m2)| is bounded by ‖v‖∞‖m1 − m2‖1

uniformly in ω, and hence |Lλ(m1) − Lλ(m2)| has the same bound. Because |δ(v1) −
δ(v2)| 6 |v1− v2|, the same bound also dominates |J(m1)− J(m2)|. This L1continuity

and (careful) application of monotone class theorems let us generalize firstly to all

bounded m of compact support and then to all m in L1(R+).

For the differential equation, we need only apply the FeynmanKac̆ formula to the

spacetime process Yt := (Xt, τt), where τt = τ0+t, which has generator L+∂t. Taking

λ = 1 for simplicity, for v in Cb(E), we define vY on Cb(E×R
+) by vY (x, t) := mtv(x),

and

At :=

∫ t

0

vY (Ys) ds =

∫ t

0

θτ0
m(s)v(Xs) ds. (4.37)

Without loss of generality we can assume that v is nonnegative, because if (4.33)

and (4.34) hold for some v, then they hold for all vectors of the form v + α1, where

1 is the constant vector (1, 1, . . . , 1). This shifting identity follows from the fact that

δ(v + α1) = δ(v) + α, a property which η inherits. Then the semigroup P v defined by

P v
t f(y) = EY0=y

(

eAtf(Yt)
)
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has generator Lv := L+∂t+mtV , as seen in, for example, III.39 of Williams [39]. Then

if we set ϕ((x, t)) := ϕ(x, t, 1, v), which is continuous in t, we have that

P v
t ϕ(Y0) = EY0

(

eAtϕ(Yt)
)

= EY0

(

E(expA∞|Ft)
)

= ϕ(Y0). (4.38)

Thus t−1(P v
t − I)ϕ = 0, implying that ϕ is in the domain of Lv and is annihilated by

it. The equation Lvϕ = 0 is exactly (4.34). �

We note that in the case of X a standard Brownian motion and the exponential

discount mt = e−t and v(x) = I(x > 0), then (4.34) is equation (1.22) of Chapter One.

Corollary 4.9 Suppose that X is an irreducible Markov chain on a finite statespace S,

with Qmatrix Q, and m is any density on [0,∞), and Aλ is defined by (4.26), then the

largedeviation property analogue of (4.28) holds for Aλ with rate function K,

lim sup
λ→0

λ logP(Aλ ∈ F ) 6 − inf
ν∈F

K(ν), and lim inf
λ→0

λ logP(Aλ ∈ G) > − inf
ν∈G

K(ν),

(4.39)

for F and G respectively closed and open subsets of M . The rate function K relates to the η of

(4.33) through the following equations:

K(x) = sup
v∈RS

〈v, x〉 − η(v), (4.40)

η(v) = sup
x∈M

〈v, x〉 −K(x), (4.41)

where M :=M1(S) = {(xi)ni=1 :
∑

i xi = 1, x > 0}.

Proof of Corollary 4.9 We are in the context of Proposition 4.8 because X will satisfy

condition (Ũ) of 4.2.7 of Deuschel and Stroock [15], which is sufficient for the limit

δ to exist as required by the theorem. The largedeviation property and (4.40) come

from theorem II.2 of Ellis [18]. In his language, t is our v, Yn is our Aλ, cn(·) is our

λ logϕ(x, 0, λ, ·), and c(·) is our η(·). As η is defined and differentiable on the whole of

R
S , it meets Ellis’ ‘steep’ hypothesis. From (4.33), η inherits the (strict) convexity and

differentiability of δ, which gives (4.41). �

We complete this section with a pair of results about the largedeviation rate

function K. The former of these is in the spirit of Proposition 2.4 of Chapter Two and
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identifies the points where the various suprema in Legendre transforms (4.40) and

(4.41) are achieved. This leads to central limit results and the major result of the next

Section.

Proposition 4.10 Under the conditions of Corollary 4.9, K is finite, twice differentiable and

strictly convex on Int(M), and the supremum of (4.40) is attained uniquely (up to multiples

of 1) at v = ∇K(x), and the supremum of (4.41) is attained uniquely at x = ∇η(v).

Proof of Proposition 4.10 It is immediate from its definition that δ(v)/‖v‖∞ → 1

as ‖v‖∞ → ∞ with v > 0. But as also |δ(v)| 6 ‖v‖∞, the Dominated Convergence

theorem gives us that η(v)/‖v‖∞ goes to 1 as well. Take x ∈ Int(M) and suppose there

exists a sequence of vectors (vn) such that

〈vn, x〉 − η(vn)→∞.

Without loss of generality we can replace (vn) by (vn − (mini vn(i))1), because η(v +

α1) = η(v) + α, and thus assume that the (vn) are positive, with at least one zero

coordinate. The sequence must still get infinitely large, but

〈vn, x〉 − η(vn) 6 ‖v‖∞
(

(1−min
i
xi)− η(vn)/‖vn‖∞

)

, (4.42)

which is large and negative for large n, contradicting our supposition of K(x) =∞.

As remarked in Corollary 4.9, η inherits the smoothness and the strict convexity

on 1⊥ of δ. Its continuity means that the supremum must be attained at some finite

point v̂(x), and the convexity gives the uniqueness. The differentiability shows that

the maximizing v̂ will be the solution of ∇η(v) = x. We can expand v̂ around an x as

v̂(x+ ǫ) = v̂(x) +H−1
η ǫ to see that

K(x+ ǫ) = K(x) + 〈v̂(x), ǫ〉+ 1
2ǫ

⊤H−1
η ǫ+ o(ǫ2). (4.43)

Thus K is twice differentiable, ∇K(x) − v̂(x) is a multiple of 1, and K is locally (and

hence globally) strictly convex. (Technical note: we are regarding Hη, the Hessian of

η, as an automorphism of 1⊥.) By the above x = ∇η(v) is a solution of (4.41), and the

strict convexity of K shows it is unique. �
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In the simple example studied in Section 2.3 of Chapter Two, the rate function

was calculated exactly asK(x) =
∑

πi log(πi/xi), which is infinite on the boundary of

M , whilst the Cesàro rate function I is finite everywhere. Note that we can see that I

is finite in the general Corollary 4.9 situation by considering equation (4.31). We shall

have further remarks about this example in the next section, but for the moment we

derive a necessary and sufficient condition for K to be everywhere finite or infinite.

Proposition 4.11 Under the conditions of Corollary 4.9, the rate function K is either

everywhere finite or everywhere infinite on the boundary of M according as to whether the

support of the discount function m is of finite or infinite (Lebesgue) length.

Proof of Proposition 4.11 Firstly let us define V+ to be the space of elements of (R+)n

which have at least one zero component. We note that λV+ = V+ for any positive λ,

which is a feature we shall use later. For x in Int(M), we take vx to be the unique choice

in V+ of the v = ∇K(x) in Proposition 4.10. In fact the pair (∇K,∇η) represents a

homeomorphism between Int(M) and V+. Then x = ∇η(vx), so by taking the gradient

of (4.33), we can write x as

x =

∫ ∞

0

mt∇δ(mtvx) dt.

Then because 〈v,∇δ(v)〉 = δ(v) + I(∇δ(v)) for all v in R
n,

〈vx, x〉 =
∫ ∞

0

(

δ(mtvx) + I
(

∇δ(mtvx)
)

)

dt = η(vx) +

∫ ∞

0

I
(

∇δ(mtvx)
)

dt.

As vx is the optimal v in (4.40), we can express K(x) as

K(x) =

∫ ∞

0

I
(

∇δ(mtvx)
)

dt. (4.44)

Thus, for an upper bound,

K(x) 6 sup
y∈M

I(y)

∫ ∞

0

I{mt>0} dt = sup
y∈M

I(y) Leb supp(m),

and so K is bounded on all of M if the support of m, supp(m), is compact. The rate

function I is only 0 in M at π, and ∇δ only takes the value π in V+ at 0. Thus from

(4.44) we have the lower bound

K(x) > Leb
{

t : mt > ‖vx‖−1
∞
}

inf
{

I
(

∇δ(v)
)

: v ∈ V+, ‖v‖∞ > 1
}

> 0.
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Now as x tends towards ∂M , the boundary of M , the vector vx tends to infinity in V+.

So if m has unbounded support, then K(x) tends to infinity as x tends to ∂M . The

intuition, of course, is that X can with positive probability avoid hitting a certain state

for all times in a finite length set but not for all times in an infinite length set. �

4.4 More exact results for Markov chains

Our aim is to obtain a sharper version of (4.33) for finite Markov chains, and then to

derive more terms of the asymptotic expansion of the density of Aλ.

The initial case studied in Chapter Two was of a symmetrizable (reversible)

Markov chain and a smooth discount density m. It turns out that m need only be of

bounded variation (see below), but for technical ease we shall give the proof first in

the case where m is also absolutely continuous.

More interestingly, the symmetrizability is seen now to have only been needed to

make one of the eigenvalues ofQ real and its corresponding eigenvector orthogonal to

the others. This in fact happens automatically because every (nondiagonal) element

of Q is nonnegative (we say that Q is essentially nonnegative). The following theorem

collects all the facts about nonnegative matrices that we will need.

Theorem 4.12 Let R be an essentially nonnegative n × n matrix. Let δ be its principal

eigenvalue (the one with greatest real part). Then δ is itself real, and its corresponding

eigenvector is nonnegative and no other is positive. If, in addition, R is irreducible (in

the stochastic sense), then δ is simple, its eigenvector is strictly positive and no other is

nonnegative, and there exists a real diagonal matrix F with positive elements such that

S := δI − F−1RF has a simple eigenvalue zero, with an orthogonal eigenprojection P , and

that, for some positive σ

〈Sx, x〉 > σ‖(I − P )x‖2, for all x ∈ R
n. (4.45)

(Where 〈 , 〉 and ‖ ‖ are the standard inner product and its norm on R
n, and an

orthogonal projection P satisfies P⊤ = P 2 = P .)

Proof of Theorem 4.12 For the first parts see the PerronFrobenius theorem in, for

example, theorem 1.5 of Seneta [34] or theorems I.7.5 and I.7.10 of Kato [24]. For the
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existence of F see Theorem 3.2, which itself is adapted from theorem I.7.13 of Kato [24].

�

We recall that the variation of a measurable function x : [0,∞) → R on [a, b] is

defined as

Vx(a, b) := sup
n
∑

i=1

|x(ti)− x(ti−1)|, (4.46)

where the supremum is taken over all partitions: a = t0 < t1 < . . . < tn = b of

[a, b]. We say that x is of finite variation (FV) if Vx(0, t) is finite for all t, and that x

is of bounded variation (BV) if Vx(0,∞) := limt→∞ Vx(0, t) is finite. An absolutely

continuous BV function is the partial integral of a function in L1(0,∞). (My thanks to

James Norris for correcting a previous misstatement here.)

We can now begin by strengthening (4.33):

Theorem 4.13 Let X be an honest irreducible Markov chain on a finite set S, with Qmatrix

Q. Let m be a nonnegative absolutely continuous density on [0,∞) of bounded variation.

Then, if X starts in state i and v is in R
S ,

Ei exp

∫ ∞

0

m(λt)v(Xt) dt = eη(v)/λ
(

wi(m0v) + o(1)
)

, (4.47)

where η(v) is as in (4.33) and w(v) is the positive eigenvector of Q + V and o(1) tends to 0

locally uniformly in v as λ goes to 0.

Proof of Theorem 4.13

The chain has an invariant distribution π, but we do not need to assume thatQ is

πsymmetric. We will aim to get a uniform bound for all v in some compact subset VK

of RS , and for a fixed m such that Vm(0,∞) 6 KV . Since Proposition 4.8 gives us the

asymptotic exponential size of ϕ, it is sensible to discount it by the same, by defining

ψi(t, λ, v) := exp

(

−λ−1

∫ ∞

0

δ(θtmsv) ds

)

ϕ(i, t, λ, v). (4.48)

Then ψ satisfies the vector differential equation transformed from (4.34)

∂tψ = λ−1R(mtv)ψ, ψ(∞, λ) = 1, (4.49)
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where R(v) is δ(v)I − (Q + V ) which has a simple eigenvalue at 0, and all its other

eigenvalues have positive real part. From Theorem 4.12, there exists a real diagonal

matrix F (v) with positive elements, such that S(v) := F−1(v)R(v)F (v) has an orthog

onal eigenprojection P (v) onto the space spanned by the strictly positive eigenvector

y(v) corresponding to the eigenvalue zero. Further there exists a positive σ(v) such

that (4.45) holds, that is

〈S(v)x, x〉 > σ(v)‖(I − P (v))x‖2 for all x, (4.50)

where 〈 , 〉 and ‖ ‖ are the standard inner product and its norm on R
S . Kato [24], or

otherwise, tells us thatR, S, F , P , y and σ are smooth in v with bounded derivatives on

VK . Let σ0 := infv∈VK
σ(v), which is positive. We now fix v, although our bounds will

still be uniform, and write Rα for R(αv), and so on. We can choose the normalisation

of F uniquely such that F0 = diag(π
−1/2
i ) and PαF

−1
α F ′

αyα = 0, and by choosing

‖y(v)‖ = 1 we ensure that Pαy
′
α = 0 and y0 =

√
π.

As in Chapter Three, we change bases appropriately by defining

χ(t, λ) := F−1
m(t)ψ(t, λ). (4.51)

The differential equation (4.49) now becomes

∂tχ = λ−1Sm(t)χ+ Jm(t)χm
′, χ(∞, λ) = √π, (4.52)

where Jα := −F−1
α F ′

α. Then by taking the inner product of (4.52) with χ we can

produce a differential inequality in the norm of χ,

1
2∂t‖χ‖2

t > 0−K1‖χ‖2
t |m′

t|, so that ‖χ‖t 6 exp

(

K1

∫ ∞

t

|m′
s| ds

)

, (4.53)

where K1 := sup ‖Jα‖, the supremum taken over the range α ∈ [0, KV ] and v ∈ VK .

Whence we deduce that χ is uniformly bounded in t and λ by Kχ := exp(K1KV ).

Now we split χ up according to the decomposition I = Pα ⊕ (I − Pα), and define

χ−(t) := (I − Pm(t))χt. We differentiate χ−, using (4.52), to get

∂tχ− = λ−1Smχ− + (I − Pm)Jmχm
′ − P ′

mχm
′, χ−(∞, λ) = 0. (4.54)
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Taking the inner product of this with χ− itself, we derive the inequality

1
2∂t‖χ−‖2

t > λ−1σ0‖χ−‖2
t −Kχ(K1 +K2)‖χ−‖t|m′

t|, (4.55)

where K2 := sup ‖P ′
α‖, with the supremum taken over the same range as K1. Which

we can integrate to get the upper bound

‖χ−‖t 6 (K1 +K2)Kχ

∫ ∞

t

e−σ0(s−t)/λ|m′
s| ds. (4.56)

And so we see that χ−(t, λ) tends to 0 as λ tends to 0 for all finite t, though note that

the convergence is not necessarily uniform in t. Finally we consider the component of

χ in the ym direction, ξ(t, λ) := 〈χ(t, λ), ym(t)〉, which is governed by the differential

equation obtained from (4.52)

∂tξt = 〈χ−, Jy + y′〉m′
t, ξ(∞, λ) = 1, (4.57)

where we used the fact that PJy = Py′ = 0. Then

|ξ(t, λ)− 1| 6 (K1 +K2)

∫ ∞

t

‖χ−(s, λ)‖ |m′
s| ds, (4.58)

which, by the Dominated Convergence theorem, tends to 0 uniformly in t as λ goes to

0. So

ϕ(i, 0, λ, v) = exp(η(v)/λ)
(

(Fy)i(m0v) + o(1)
)

, (4.59)

and F (v)y(v) = w(v), where w(v) is the positive eigenvector of Q + V , with the nor

malisation that w(0) = 1 and ∂αw(αv) is orthogonal to the positive eigenvector of

Q⊤ + αV . In the case where Q is πsymmetrizable (πiqij = πjqji), then the normalisa

tion condition becomes ‖w‖π = 1, where ‖v‖2
π =

∑

πiv
2
i . �

The next theorem removes the restriction that m need be continuous, but takes

us into the technicalities of FV functions. The casual reader can pass this by without

disadvantage.

An FV function can be written as the difference of two increasing functions, that

is

xt = x0 + x+t − x−t ,

where x+t := 1
2 (xt + Vx(0, t)− x0) and x−t := 1

2 (x0 + Vx(0, t)− xt).
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And so x has only countably many discontinuities (though they may even be dense),

and thus can be taken to be an Rfunction (rightcontinuous with left limits). We

shall take all our functions to be Rfunctions. We adapt the calculus from the left

continuous integrands of V.18 of Rogers and Williams [33] (changing some signs) to

give the formulae

x = x0 + xc + xa(Decomposition)

d(xy) = x dy + y dx−△x△y(Integration by parts)

d(f(x)) = f ′(x) dxc +△(f(x))(Itô’s formula)

where x and y are FV and f isC1,△xt is xt−xt−, and xc and xa denote the continuous

and purely discontinuous parts of x respectively. There is an expression for xa as
∑

0<s6t△xs. As x+ and x− are increasing they induce positive σfinite Lebesgue

Stieltjes measures on (0,∞), via x+(a, b] = x+b − x+a . So we can associate x with the

(signed) measure of their difference. We write dxt = dx+t − dx−t . We will also use the

notation |dxt| for dx+t + dx−t = dVx. The differential expressions above are symbolic,

being merely shorthand for integral expressions.

We will also use an FV exponential result in that if x is BV and

if dxt > −xt|dyt|, then xt 6 x∞
∏

s>t

(1 + |△ys|) expVyc(t,∞). (4.60)

Another useful result follows from integration by parts, in that

1
2d‖xt‖2 = 〈xt, dxt〉 − 1

2‖△xt‖2. (4.61)

Theorem 4.14 Theorem 4.13 remains true if m is a discontinuous nonnegative density of

bounded variation.

Proof of Theorem 4.14 We follow the proof of Theorem 4.13 exactly down to (4.51),

except that we takeR, F S and P to be functions of t rather than v. We writeG := F−1,

w := Fy and w∗ := Gy, and take the normalisation that ‖y‖ = 1 ( ⇐⇒ 〈w,w∗〉 = 1)

and 〈w, dw∗〉 = 0 ( ⇐⇒ 〈dw, w∗
−〉 = 0). Note that all these functions are BV. Then

(4.52) becomes

dχ = λ−1Sχdt+ dGFχ. (4.62)
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So 1
2d‖χt‖2

> 〈dGFχ, χ〉t − 1
2‖△GFχ‖2

t > K1‖χt‖2‖dG‖, (4.63)

by (4.61) and (4.60), for some constant K1. Hence ‖χt‖ is uniformly bounded in t by

some constant Kχ. Now using (4.62) and (4.61) we again work with the components

of χ orthogonal to y,

1
2d‖χ−‖2

t >
σ0

λ
‖χ−‖2

t dt+ 〈dGFχ− dP χ+△P△χ, χ−〉t − 1
2‖△(Pχ)‖2

t

>
σ0

λ
‖χ−‖2

t dt−K2(‖dGt‖+ ‖dPt‖),

for some constant K2. So a result of the same form as (4.56) holds. Finally we find that

dξ = ξ〈w, dw∗〉+ 〈Fχ−, dw
∗〉,

and we have a bound similar to that of (4.58), because 〈w, dw∗〉 = 0. Explicitly, wt is

the positive eigenvector of Q +mtV with the normalisation that w∞ = 1 and dwt is

orthogonal to the positive eigenvector of Q⊤ +mt−V . �

We can calculate an exact expression for w.

Lemma 4.15 Let y(v) be the positive eigenvector of Q+ V of constant norm, with y(0) = 1.

If w0
t := y(mtv) and w∗

t is the positive eigenvector of Q⊤ + mtV satisfying 〈w0
t , w

∗
t 〉 = 1,

then

wt = w0
t

∏

s>t

(1 + 〈△w0
s, w

∗
s−〉) exp

∫ ∞

t

〈dw0,c
s , w∗

s〉.

Further wt = wt(v,m) is continuous in v.

Proof of Lemma 4.15 If we set wt = rtw
0
t , then

dwt = drct w
0
t + rt dw

0
t +△rtw0

t− so 〈dwt, w
∗
t−〉 = drt + rt〈dw0

t , w
∗
t−〉.

An application of (4.60) gives the expression for w. Elementary perturbation results,

in for example Kato [7], tell us that y is smooth in v and so

dw0
t (v) = 〈v,∇〉y(mtv) dm

c
t +△(w0

t (v)).

Thus the difference dw0
t (v)− dw0

t (u) can be written as

(

〈v − u,∇〉y(mtv) + 〈u,∇〉(y(mtv)− y(mtu))
)

dmc
t +△(y(mtv)− y(mtu)).

Hence |dw0
t (v)− dw0

t (u)| 6 K1‖v − u‖ |dmc
t |+K2‖v − u‖ |△mt|,
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where K1 := supKV
‖∇y(v)‖ + VK supKV

‖v‖ ‖∇y(v) − ∇y(u)‖/‖v − u‖ and some

constant K2. Hence wt is (Lipschitz) continuous in v. �

Theorem 4.16 Let X be an honest irreducible Markov chain on a finite set S, with Qmatrix

Q. Let m be a nonnegative density on [0,∞) of bounded variation. Then where fλ
i is the

density of Aλ on M under the law starting X at i, the (fλ
i ) can be written as

fλ
i (x) = e−K(x)/λ(2πλ)−(n−1)/2

(

detHK(x)
)1/2

zi(x)r
λ
i (x), (4.64)

where K is as defined by (4.40), HK denotes its Hessian taken with respect to M , z(x) is the

positive eigenvector of Q+ diag(m0∇K(x)), and the residue term rλ goes to 1 as λ goes to 0,

in the sense that

lim sup
λ↓0

∫

F

rλi (x+
√
λy) dy 6 |F |, and lim inf

λ↓0

∫

G

rλi (x+
√
λy) dy > |G|, (4.65)

for all x in Int(M), and for F and G respectively closed and open bounded subsets of 1⊥.

Notes: (1) We take the Hessian regarding K as a function on an open subset of Rn−1,

that is K(x1, . . . , xn−1, 1−
∑n−1

i xi). See the example at the end of this Chapter.

(2) Unfortunately we would really like to prove the result that

Pi(Aλ ∈ H) ∼
∫

H

e−K(x)/λ(2πλ)−(n−1)/2
(

detHK(x)
)1/2

zi(x) dx, (4.66)

for suitable H , as λ goes to 0. This could be proved if the integrand in our control of

rλ was rλi (x+ λy) rather than rλi (x+
√
λy).

Proof of Theorem 4.16 Theorem 4.13 can be taken as saying that for v in R
S ,

fv,λ
i (x) := exp

(

λ−1
(

〈v, x〉 − η(v)
)

)

fλ
i (x)/wi(v) (4.67)

is (asymptotically) a density on M , where wi(v) is the w0(v,m)(i) of Lemma 4.15, and

our zi(x) will be wi(∇K(x)). If Av
λ under Pi has the law fv,λ

i , then we can derive a

central limit result by considering Zv
λ := (Av

λ −∇η(v))/
√
λ. We see that for u in R

S ,

Ei

(

exp〈u, Zv
λ〉
)

= exp
(

λ−1
(

η(v +
√
λu)− η(v)− 〈

√
λu,∇η(v)〉

)

)

. . .
(

wi(v +
√
λu) + o(1)

)

/wi(v), (4.68)
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using the local uniformity in v of the convergence of o(1). As η inherits the smoothness

of δ, we can expand it about v as

η(v +
√
λu) = η(v) + 〈

√
λu,∇η(v)〉+ 1

2λu
⊤Hη(v)u+ o(λ), (4.69)

and hence deduce that

lim
λ↓0

Ei

(

exp〈u, Zv
λ〉
)

= exp
(

1
2u

⊤Hη(v)u
)

. (4.70)

In other words

Zv
λ

D→ N(0, Hη(v)).

We can think of fv,λ
i as the distribution of Aλ conditioned in some way to converge to

∇η(v), but we do not make this formal. Proposition 4.10 provides the interpretation

of∇η(v) as the maximizing x in the Legendre transform.

Recall that a sequence of laws (νn) on a Polish space E converges to a law ν

with respect to the weak topology on M1(E) if 〈v, νn〉 → 〈v, ν〉 for all v in Cb(E).

Billingsley [9], 2.1, shows that this is equivalent to each of the following

lim sup
n→∞

νn(F ) 6 ν(F ) F closed in E,

lim inf
n→∞

νn(G) > ν(G) G open in E,

and lim
n→∞

νn(H) = ν(H) H in E with ν(∂H) = 0.

Setting x = ∇η(v), we recall from Proposition 4.10 that ∇K(x) is v, up to a multiple

of 1. The asymptotics of the density of Zv
λ are given by

fZ,λ
i (y) := λ(n−1)/2fv,λ

i (x+
√
λy) ∼ (2π)−(n−1)/2 detHK(x)

1
2 e−

1
2 y

⊤HK(x)y rλi (x+
√
λy),

because

〈v, x+
√
λy〉 − η(v)−K(x+

√
λy)

= 〈v, x〉 − η(v)−K(x) +
√
λ〈v −∇K(x), y〉 − 1

2λy
⊤HK(x)y + o(λ)

= λ(− 1
2y

⊤HK(x)y + o(1)).

The normal distribution N(0, Hη(v)) itself has density

f(y) = (2π)−(n−1)/2 detHK(x)
1
2 e−

1
2 y

⊤HK(x)y,
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as Proposition 4.10 tells us that HK = H−1
η on M . By Lemma I.45.1 of Williams [39], if

H is bounded and |∂H| = 0 then

∫

IH(y)(f(y))−1fZ,λ
i (y) dy→ |H|, or

∫

H

rλi (x+
√
λy) dy → |H|. (4.71)

Hence by the equivalence of the above expressions for weak convergence, the result is

proved. �

The following Corollary is intended in the way of a remark, and was the original

statement of Theorem 4.16, but is now seen to be weaker, although perhaps a more

natural formulation.

Corollary 4.17 Under the conditions of Theorem 4.16,

lim sup
λ↓0

∫

F

rλi (x) dx 6 |F | and lim inf
λ↓0

∫

G

rλi (x) dx > |G|, (4.72)

for F closed in Int(M) and G open in Int(M). In other words, rλi (x) dx converges weakly to

dx on Int(M).

Proof of Corollary 4.17 Take G open in Int(M), δ small and positive with Gδ := {y ∈
G : B(y, δ) ⊆ G}, and B a ball around 0, then by Fatou’s lemma and Fubini’s theorem

|Gδ| |B| =
∫

Gδ

(

lim inf
λ↓0

∫

B

rλi (x+
√
λy) dy

)

dx

6 lim inf
λ↓0

∫

Gδ

∫

B

rλi (x+
√
λy) dy dx 6

(

lim inf
λ↓0

∫

G

rλi (x) dx

)

|B|.

Letting δ tend to 0, we have one of our bounds. For some F closed in Int(M), we need
∫

B
rλi (x+

√
λy) dy to be uniformly bounded on F and for λ near 0. It is, and the bound

is

sup
x∈F

(2π)(n−1)/2 detHK(x)−
1
2 sup
y∈B

e
1
2 y

⊤HK(x)y <∞.

Working with this F and with F δ := {y ∈ M : d(y, F ) 6 δ}, we can show in a similar

way that

lim sup
λ↓0

∫

F

rλi (x) dx 6 |F δ|,

and hence we are home. �
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Some remarks.

(a) Were the rλi to be equicontinuous (or some such condition) we would have that

rλi (x) → 1 for all x and hence that fλ
i (x)/f

λ
j (x) → zi(x)/zj(x) and lim−(Qfλ)i/f

λ
i

differs from m0∇K(x) only by a multiple of 1, as in Section 2.2 of Chapter Two, where

the choice of∇K(x) in ker(δ) was called g(x).

(b) Note that the proof of Theorem 4.16 gives us a central limit theorem for Aλ as

Zλ := (Aλ − π)/
√
λ

D→ N(0, Hη(0)). (4.73)

Taking a Taylor expansion of δ about 0 and integrating we discover that Hη(0) =

σ2Hδ(0), where σ = ‖m‖L2 which is finite because m is in both L1 and L∞.

Example. (This case was first studied in Section 2.3) Suppose we have a Markov

chain which is symmetric and spacehomogeneous, with Qmatrix qij := πj − δij ,

where π is a distribution on a finite set S. The Cesàro largedeviation rate function is

I(x) = 1−(∑√πixi)2, and the exponentially discounted largedeviation rate isK(x) =
∑

πi log(πi/xi). We found then that δ(v) is the unique root δ in (maxi(vi − 1),∞) of

∑

i∈S

πi
δ + 1− vi

= 1,

and that η is given by η(v) = δ(v)−∑i πi log(δ(v) + 1− vi). We find now that

∇iI(x) = 1−
√

πi
xi

(

∑

j∈S

√
πjxj

)

,

∇iδ(v) =
πi

(δ(v) + 1− vi)2

/

∑

j∈S

πj
(δ(v) + 1− vj)2

,

∇iK(x) = 1− πi
xi
,

and ∇iη(v) =
πi

δ(v) + 1− vi
.

Here we chose ∇I and ∇K to be in the kernel of δ. The distribution of Aλ can be

calculated explicitly to be a multidimensional βdistribution with density

fλ
i (x) =

xi
πi

Γ(λ−1)
∏

j∈S

x
(πj/λ)−1
j

Γ(πj/λ)
.
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Note that the Hessian of K on M is not the same as that derived from the extension of

K to R
S , but by using any of the following coordinate schemes:

Ki : RS\{i} −→ R for each i ∈ S

where (xj)j 6=i 7−→ K(x1, . . . , xi−1, 1−
∑

j 6=i

xj , xi+1, . . . , xn)

or K0 : Rn −→ R

where x 7−→ K(x+ (1− 1⊤x)1/n) + 1
2 (1

⊤x)2.

What is happening here is that our choice of basis for evaluating the Hessian cor

responds to our choice of basis for integrating which was made back at the start of

Section 2.2 of Chapter Two. The K0 representation projects onto M and adds a strictly

convex term which is perpendicular toM . This representation is more natural, though

cumbersome to calculate with, and can be shown equivalent to any of the others by

verifying that the change of basis matrix has determinant one. Thus the Hessian (in

the Kn realisation) and its determinant are given by

HKn
(x)ij =

π

x2
i

δij +
πn
x2
n

and det(HK(x)) =
(

∏

i∈S

πi

x2
i

)

∑

j∈S

x2
j

πj
.

The normalisation of the eigenvector zi(x) is that ‖z‖π = 1, so it is given by

zi(x) =
xi
πi

(

∑

j∈S

x2
j

πj

)−1/2

.

(The corresponding vector for the Cesàro case is
√

xi/πi(
∑

j

√
πjxj).) We can now

calculate the residual functions using Stirling’s formula

Γ(x) =
√

2πxx−
1
2 e−x(1 +O(x−1)),

where |O(x−1)| 6 K/x as x → ∞ for some constant K. It is thus discovered that the

residual functions rλi (x) can be calculated and are found to be independent of both i

and x, and are of size 1 +O(λ).

Hypothesis 4.18 We recall from Theorem 2.3 that in the setup of Theorem 4.16 with

the exponential discount (mt = e−t), the density fλ satisfies the vector differential

equation

Lfλ = −λ−1Qfλ, (4.74)
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whereL is the matrix differential operatorL = diag(
∑

j 6=i(∂j−∂i)xj)i∈S . Here we have

changed the domain of fλ from a subset of Rn−1 equivalent to M , to a neighbourhood

of M in R
n by extension. The operator L is invariant to the extension chosen. If we

discount fλ by the known largedeviation rate function K, that is by defining gλ by

fλ(x) = e−K(x)/λ(2πλ)−(n−1)/2gλ(x)

then Lgλ = λ−1R
(

∇K(x)
)

gλ.

This compares with equation (4.49) which said that

∂tψ = λ−1R(mtv)ψ,

where ψ is the discount of ϕ as defined by (4.48). The matrix R(v) has a simple

eigenvalue 0 and all other eigenvalues have positive real part. We saw that ψ tended

to a multiple of the 0eigenvector of R(mtv) as λ went to 0, and also that gλ tended (in

some sense) to z(x), which was the 0eigenvector of R(∇K(x)). We can formulate an

analogue of (4.74) for the general discount case as follows.

Let us write Aλ,t for λM−1
t

∫∞
0 θtm(λs)δXs

ds, where Mt :=
∫∞

0 θtm(s) ds, and

fλ,t
i for the density ofAλ,t ifX starts in state i. ThenAλ,t will satisfy the largedeviation

property with rate function Kt, where

Kt = η∗t where ηt(v) :=

∫ ∞

0

δ(M−1
t θtm(s)v) ds,

and we write fλ,t as

fλ,t(x) = e−Kt(x)/λ(2πλ)−(n−1)/2gλ,t(x).

Then M−1
t mtLgλ,t + ∂tg

λ,t = λ−1R
(

M−1
t mt∇Kt(x)

)

gλ,t.

Again Theorem 4.16 tells us that gλ,t tends (in some sense) to the 0eigenvector, z, of

the matrix R. We hypothesize that the convergence is in fact pointwise.



Chapter Five
Processes on the Binary Tree

If you wish to advance into the infinite,

explore the finite in all directions.

Goethe, Maximen und Reflexionen
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5.1 Introduction and Summary

We consider a Markov chain on the nodes of the binary tree, I :

0

Figure 5.1 Graph of the Binary Tree

By choice of jump rates and the relative updown weightings, we can ensure that the

chain is reversible, positive recurrent, and able to hit infinity and return in finite time.

Our basic structural assumption, on which we shall lean heavily, is of lateral symmetry

— that is that jump rates depend on the state only through its level and that the process

is equally likely to go left as right on any down jump.

As we shall see, Rogers and Williams [32] allows us the existence of the chain

with reflection at its boundary. The RayKnight compactification can be thought of as:

0

Figure 5.2 RayKnight Compactification

Let I be the points of the nodes of the graph, C be the Cantor set of limit points of I ,

and F be I ∪ C, the RayKnight compactification of I .

Given the F valued process X , the projection process n(Xt), the level of Xt,

is also a Markov chain (by the symmetry) and is a birthdeath process on the non

negative integers with the onepoint compactification at infinity. This level process

reflects from infinity, as the projection of the timetruncation of X is the same process
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as the timetruncation of the reflecting birthdeath process.

The chain can be fully quantified by the jump rates from level n.

level n

µ(n)

λ(n)/2 λ(n)/2

level n

µ(n)

λ(n)

Figure 5.3 Graph process Figure 5.4 Projected BD process

The upjump rate is µn and the left and right downjump rates are both 1
2λn, and we

shall define qn to be λn + µn. We put πn := (λ0 . . . λn−1)/(µ1 . . . µn)π0, the invariant

measure for the BD process, choosing π0 to make π a distribution if it is a finite measure.

Let us give a formal statement of the construction of the chain on the tree:

Theorem 5.1 There exists a symmetrizable transition matrix P (t) and a Feller resolvent Rλ

on F , and a strong Markov F valued honest Rprocess X with law P (t) such that X makes

jumps from points of I as given by Figure 5.3, and reflects off the boundary C. Further the

P (t) semigroup is FellerDynkin (FD), and for all the boundary points ξ, λrλ(ξ, I) = 1.

Proof of Theorem 5.1 The proof is given in Section 5.3.

NOTATION: We shall denote states of the graph process on I by i, j and so on, and

states of the level process by n. For example the invariant measure of the graph

process, ν, is given by νi = 2−n(i)πn(i), where n(i) is the level of state i, and π is the

invariant measure of the birthdeath level process as given above.

We can think in terms of the level process as being the timechange of a Brownian

motion reflecting at each end of a bounded interval, [0, a]. This is made rigorous later

(Section 5.4). The set of times at which this Brownian process is at 0 is a random

Cantor set, which in particular is uncountable and perfect. Our first question is

inspired by noticing that when the graph process first hits the boundary, it must almost

immediately return uncountably often to the boundary. But there are uncountably

many other boundary points nearby. Does it return to the same point of the boundary ?
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That is, is the boundary point regular ? One can think of a bolt of lightning which

bounces back off the ground and back down again repeatedly. From all the possible

bits of ground, how can it ever find again the exact spot where it first hit ?

Assuming (wisely) that we can arrange it so that all boundary points are regular

(and thus have individual local times), our second question is: can we find a jointly

continuous version of the local time on F ?

The precise answers to all these questions are contained in the following theorem:

Theorem 5.2 Let X be the graph process as constructed above. Then

(1) X is positive recurrent ⇐⇒ ∑

n πn <∞, and then

(2) X reaches the boundary in finite time ⇐⇒ ∑

n
1

λnπn
<∞, and then

(3) any (and hence each) boundary point is regular ⇐⇒ ∑

n bn <∞, and then

(4) there exists a jointlycontinuous local time on F ⇐⇒ ∑

n

√

1
ncn <∞, and then

(5) X has visited all the states of F by a finite time,

where bn := 2n

λnπn
, and cn :=

∑∞
r=n br.

Corollary 5.3 If (1)–(3) hold then

∑

n

n1+ǫ bn <∞ ⇒ there exists a jointlycontinuous local time on F ,

and
∑

n

nbn =∞ ⇒ there does not.

We shall see in the next and final Chapter how the conditions (3) and (4) can be

seen as translations of results for continuous space Lévy processes.

We now have enough to construct a boundary (Cantor set) valued process, which

we examine in Section 5.5.
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5.2 Proof of Theorem 5.2

This section contains the mathematics of the proof, the next contains the arithmetic.

Proof of Parts (1) and (2) These parts of the theorem are basic Markov chain theory.

See, for example, 43 of Wolff [7]. �

Proof of Part (3) Rogers and Williams [32] have given us a standard honest π

symmetric transition matrix functionP (t) = (pij(t))i,j∈I , such thatPi(Xt = j) = pij(t).

We define its Laplace transform R(λ) and a νnormalised symmetric resolvent uλ by

rij(λ) :=

∫ ∞

0

e−λtpij(t) dt,

and uλ(i, j) = uλ(j, i) := rij(λ)/νj

(5.1)

respectively. It is known that a boundary point ξ is regular if and only if (for any

and hence all λ) uλ has a continuous extension to (ξ, ξ) and uλ(ξ, ξ) < ∞. By the

definition of the RayKnight compactification, in for example III.57 of Williams [39],

we see that uλ has a finite continuous extension to F × I , and hence by symmetry to

F × F\{(ξ, ξ) : ξ ∈ F\I}.

Let us put a partial order on F by saying x < y for x, y in F , if n(x) < n(y) and

x is one of the points between y and the root of the tree 0. We say that x is above y,

and that y is below x. For any pair x and y, we let x ∧ y be the <greatest point which

is above both of them. Pick an i above ξ and let Ii := {j ∈ I : i 6< j} be the set of all

points not below i. For any k below i, and for any j in Ii, all paths from j to k must

pass through i, so that the strong Markov property implies that

uλ(j, k) = Ej

(

e−λH(i)
)

uλ(i, k),

where H(i) is the time to first hit state i. Letting k tend to ξ ∈ C, we find that

uλ(j, ξ) = Ej

(

e−λH(i)
)

uλ(i, ξ).

Then

∑

j∈Ii

νjuλ(j, ξ) =
∑

j∈Ii

νjEj

(

e−λH(i)
)

uλ(i, ξ),

and so uλ(i, ξ) =
λ
∑

j∈Ii
νjuλ(j, ξ)

λ
∑

j∈Ii
νjEj

(

e−λH(i)
) . (5.2)
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As i goes to ξ, Ii ↑ I , and the numerator in (5.2) tends upwards to λrλ(ξ, I) which is 1

by Theorem 5.1. Therefore

uλ(ξ, ξ) =
1

λ
∑

I νjEj

(

e−λH(ξ)
) , (5.3)

and uλ(ξ, ξ) <∞ if and only if H(ξ) <∞ (a.s.).

We let the “upjump time”, Vn, be a random variable distributed as the time to

hit level (n− 1) starting at level n, and let the “leftdownjump time”, Tn, be a random

variable distributed as the time to hit the point below and to the left of a start point

on level n. Then we can control the means and variances of these in the following

theorem.

Theorem 5.4 If (1) and (2) hold then

EVn =
π[n]

λn−1πn−1
,

ETn =
2n+1 − π[n+ 1]

λnπn
,

Var(Vn) =
1

λn−1πn−1

∞
∑

r=n

(

π[r]2

λr−1πr−1
+
π[r + 1]2

λrπr

)

,

Var(Tn) 6 K
2n

λnπn

n
∑

r=0

2r

λrπr
, for some K,

where π[r] := π({r, r + 1, . . .}).

We defer this proof till Section 5.3, but the method of calculation in each case is

just to find the minimal nonnegative solution to a system of equations induced by

conditioning on the first jump. We find that means are enough for upper bounds and

sufficiency, but we need control away from 0, that is variance information, for lower

bounds and necessity.

Proof of Sufficiency of (3) If
∑

n bn < ∞ (where bn = 2n/λnπn) then Theorem 5.4

shows that E0(H(ξ)) =
∑

n ETn <∞ and so ξ is a regular boundary point. �

Proof of Necessity of (3) Conversely, if
∑

n bn =∞ we use the following lemma:

Lemma 5.5 (LowerBound Lemma) If X : Ω → [0,∞] is a random variable such that

E(X2) 6 KE(X) <∞ for some K, then

E
(

1− e−X
)

> αE(X) (5.4)

where α = α(K) =
1− e−4K

8K
.
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Proof of Lemma 5.5 The proof is given in Section 5.3, and uses concavity coupled

with the variance control. �

By Theorem 5.4 (noticing that (ETn)
2 is of no greater order than Var(Tn)) we have that

E(T 2
n) 6 KdnE(Tn),

(for some new K) where dn =
∑n

r=0 br. And so the Lower Bound Lemma 5.5 tells us

that

E
(

1− e−Tn
)

>
1− e−4Kdn

8Kdn
E(Tn)

> α
bn
dn

for some α > 0,

as dn → ∞ as n → ∞. Kronecker’s Lemma tells us that
∑

n
bn
dn

= ∞, and we deduce

that
∑

n E(1 − e−Tn) = ∞, and hence E0(e
−H(ξ)) =

∏

n E(e−Tn) = 0, giving us the

necessity of condition (3). Here we have used, and will use again, the useful analysis

lemma that for a sequence (xn) in (0, 1),
∑

n(1 − xn) is finite if and only if
∏

n xn is

positive. �

Proof of Part (4) Given (1)–(3), we can assume an individual local time L(t, x) for

each point x of F . For (4) we use an excellent paper of Marcus and Rosen [28], which

uses an Isomorphism theorem of Dynkin between the Markov chain on the graph,

and zeromean Gaussian process on the graph with covariance equal to the 1potential

density u1(·, ·). Their theorems 2 and 8.1 together state that

Theorem 5.6 (Marcus and Rosen) LetX be a strongly symmetric standard Markov Process

with continuous 1potential density u1. Let L = {L(t, x) : t ∈ R
+, x ∈ F} be the joint local

time of X , then L is continuous a.s. if and only if there exists a probability measure m on F

such that

sup
x∈F

∫ δ

0

[

log
1

m(Bd(x, r))

]1/2

dr −→ 0 as δ → 0, (5.5)

where Bd(x, r) is the radiusr closed ball centered on x under the metric d, where

d(x, y) = [u1(x, x) + u1(y, y)− 2u1(x, y)]
1/2

. (5.6)

X is strongly symmetric if u1 exists as a symmetric πdensity for the Laplace transform

of P (t), which here is true. Our first step is to show (in Section 5.3)
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Lemma 5.7 Given (1)–(3), for x, y in F , with n(x) < n(y), then

αEx∧y(H(y)) 6 d2(x, y) 6 AEx∧y(H(y)),

for some universal constants α and A.

Proof of Lemma 5.7 Given in Section 5.3. �

As already hinted, the upper bound follows from simple inequalities and knowl

edge of the means, whilst the lower is derived from variance control and the more

subtle analysis of the Lower Bound Lemma 5.5. The lemma tells us that d is “equiva

lent” to the sequence (cn), and we essentially translate condition (5.5) of Theorem 5.6

into a statement about (cn), preserving both necessity and sufficiency.

Proof of Sufficiency of (4) We elect m to be 1
2p + 1

2c, where p is the probability

on I giving mass 2−(2n+1) to each point on level n, and c is the Cantor distribution

(Hausdorff measure) on C. Our condition holds, that is

∑

n

√

1

n
cn <∞ where cn :=

∞
∑

r=n

br, and bn :=
2n

λnπn
.

Putting x = ξ ∈ C, we can deduce from Theorem 5.4 and Lemma 5.7 that (for new α

and A)

αcn(y∧ξ) 6 d2(ξ, y) 6 Acn(y∧ξ). (5.7)

Thus for r chosen to lie in
√
Acn 6 r <

√

Acn−1, then In := {y > ξn} ⊂ Bd(ξ, r), where

ξn is the point on level n above ξ. So

m(Bd(ξ, r)) > m(In) >
1
2c(In) = 2−(n+1),

and

∫

√
Acn

0

[

log
1

m(Bd(ξ, r))

]1/2

dr 6

∞
∑

r=n

√

A log 2
(√
cr −

√
cr+1

)
√
r + 2

6 K

(

√
ncn +

∞
∑

r=n

(√
r + 1−

√
r
)√

cr

)

6 K

(

√
ncn +

∞
∑

r=n

√

1

r
cr

)

.
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By the monotonicity of (cn),
√
ncn < 2

∑∞
r=⌈n/2⌉

√

1
r cr which goes to 0 as n goes to

infinity, so that the whole righthand side goes to 0 as we wish.

We also have to get a similar result when x = i ∈ I . Let N be n(i), the level

of i, and let in be the point on level n above i, for n 6 N . As before, for r such that
√
Acn 6 r <

√

Acn−1, then {y > in} ⊂ Bd(i, r). In addition for 0 < r <
√
AcN , then

{i} ⊂ Bd(i, r), so m(Bd(i, r)) > m{i} = 2−(2N+1). And so

∫

√
AcM

0

[

log
1

m(Bd(i, r))

]1/2

dr 6 K ′
{√

McM +
√
NcN +

∑N−1
r=M

√

1
r cr M < N ,

√
NcM M > N ,

which goes to 0 uniformly in N as M →∞. Thus the sufficiency is proved. �

Proof of Necessity of (4) For this we use the lower bound for d. Ifm is any probability

measure on F , set ξ0 to be 0, and recursively define ξn+1 to be the point immediately

below ξn which has no more mmass in its subtree than the other point immediately

below ξn, so that m{y > ξn} 6 2−n. We set ξ := limn ξn be a boundary point. If r is

such that
√
αcn 6 r <

√
αcn−1, then Bd(ξ, r) ⊂ {y > ξn}, so

∫

√
αcN

0

[

log
1

m(Bd(ξ, r))

]1/2

dr >
∞
∑

n=N

√

α log 2
(√
cn −

√
cn+1

)
√
n+ 1

> k
∞
∑

n=N+1

√

1

n
cn, for some k > 0. �

Proof of Part (5) Fix ξ ∈ C and let An := {ζ ∈ C : ζ > ξn}, where ξn is the point on

level n above ξ. Let τξ(t) := inf{s : LX(s, ξ) > t}, and set

p(n, t) := Pξ(L
X(τξ(t), ·) > 0 on An).

The function p is monotone in each coordinate, and as LX is jointlycontinuous

limn→∞ p(n, t) = 1, (t > 0). Thus p is positive for some (and hence all) n, and the

strong Markov property gives us that

1− p(0, Nt) 6 (1− p(0, t))N ,

whence we deduce that limt→∞ p(0, t) = 1. If we now setCt := {ζ ∈ C : LX(t, ζ) > 0},
which is open as LX is continuous, we have proved that Ct ↑ C as t→∞, and by the

compactness of C, we deduce that CT = C for some finite T . �
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5.3 Various Proofs

Proof of Theorem 5.1 The timetruncation arguments of Rogers and Williams [32] let

us take the limit of finite chains on the tree which reflect at level n to give us, their theo

rem 9.13, a symmetrizable transition matrix P (t) and Feller resolvent Rλ on I . Section

III.81 of Williams [39] extends these functions to the RayKnight compactification F ,

and constructs the process X . By symmetry, either all or none of the boundary points

are ‘relevant’ points in the sense of that section, that is that a point ξ is relevant if

λrλ(ξ, I) = 1. Irrelevant points cannot be visited by X , but X does visit the boundary

on explosion, so implying that all boundary points, ξ, are relevant, in other words that

λrλ(ξ, I) = 1.

Finally, to show that P (t) is FD, we have only to work to prove that

Ptf(x)→ f(x) as t ↓ 0,

for any f in C(F ), the space of continuous functions on F , and for any x in F . This is

easy for x in I , so let us assume that x = ξ is in C. Given f in C(F ) and any positive ǫ,

then there exists a level n such that if we let ξn be the point on level n above ξ and let

In be the set of points below or equal to ξn, then |f(ξ)− f(x)| < ǫ for all x in In. Then

as, starting at ξ, we cannot leave In without passing through ξn,

Pt(ξ, In) > e−qnt. And hence |Ptf(ξ)− f(ξ)| < ǫ+ 2‖f‖∞
(

1− e−qnt
)

,

which goes to ǫ as t goes to 0. As ǫ is arbitrary, we can deduce that P (t) is FD. �

Proof of Corollary 5.3 Firstly, if
∑

n n
(1+ǫ) bn <∞, then by Hölder’s inequality

∑

n

√

1

n
cn 6

(

∑

n

1

n1+ǫ

)1/2(
∑

n

nǫcn

)1/2

<∞,

because
∑

n

nǫcn =
∑

n

bn

( n
∑

r=1

rǫ
)

6
∑

n

n(1+ǫ) bn <∞.

Secondly, if
∑

n nbn =∞, then as

N
∑

n=1

nbn =
N
∑

n=1

N
∑

r=n

br 6

N
∑

n=1

cn,
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we see that
∑

n cn =∞. We consider the sequence (dn), defined by dn :=
√

cn/n, and

look at the set

A := {n : dn > 1/n} = {n : cn > dn}.

If A is finite, then (dn) is eventually more than (cn) so its sum diverges. IfA is infinite,

there exists an increasing sequence (ni) in A, so that by the monotonicity of (dn)

∑

n

dn >
∑

i

ni − ni−1

ni
=
∑

i

(

1− ni−1

ni

)

=∞, as
∏

i

ni−1

ni
= 0. �

Proof of Theorem 5.4 Let kn be set to E(Vn), the expected time to jumpup one level

from n. We can expand Vn conditionally on the first jump as

Vn = E(qn) +
{

0 with prob. µn/qn
Vn+1 + Ṽn with prob. λn/qn,

(5.8)

where Ṽn has the same distribution as Vn, E(α) is exponentially distributed with rate

α, and all variables on the righthand side are independent. We know the (kn) are the

minimal nonnegative solutions to

kn =
1

qn
+
λn
qn

(kn + kn+1), (n > 1),

or (λn−1πn−1kn) = πn + (λnπnkn+1)

(using µnπn = λn−1πn−1). This has the required solution

kn =
π[n]

λn−1πn−1
.

Similarly the variance sequence (Var(Vn)) will satisfy

Var(Vn) =
1

q2
n

+
λn
qn

[

Var(Vn+1) + Var(Vn)
]

+
λnµn

q2
n

[

E(Vn+1 + Vn)
]2
,

or
[

λn−1πn−1 Var(Vn)
]

=
[

λnπn Var(Vn+1)
]

+
π[n]2

λn−1πn−1
+
π[n+ 1]2

λnπn
,

which has the desired solution.

Now we let hn be equal to E(Tn), the expected time to downjump one level

from n to a particular point. We can decompose Tn as

T0 = E(λ0) +

{

0 with prob. 1
2

V1 + T̃0 with prob. 1
2 ,
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Tn = E(qn) +







0 with prob. 1
2λn/qn

Vn+1 + T̃n with prob. 1
2λn/qn

Tn−1 + T̃n with prob. µn/qn,

(n > 1) (5.9)

where T̃n has the same distribution as Tn. So (hn) is the minimal solution to

h0 =
1

λ0
+ 1

2h0 +
1
2

π[1]

λ0π0

hn =
1

qn
+
µn + 1

2λn
qn

hn +
µn

qn
hn−1 +

1
2λn
qn

π[n+ 1]

λnπn
(n > 1),

or

λ0π0h0 = 2− π[1]

(λnπnhn) = 2(λn−1πn−1hn−1) + πn + π[n] (n > 1).

We can use induction to show that

(λnπnhn) = 2n+1 − π[n+ 1], (n > 0)

whence the result.

Finally Var(Tn) will be the minimal nonnegative solution to the following equations:

Var(T0) =
1

λ2
0

+ 1
2

[

Var(V1) + Var(T0)
]

+ 1
4

[

E(V1 + T0)
]2

Var(Tn) =
1

q2
n

+
1
2λn
qn

[Var(Tn) + Var(Vn+1)] +
µn

qn
[Var(Tn) + Var(Tn−1)]

+
1
2λn(µn + 1

2λn)

q2
n

[E(Tn + Vn+1)]
2
+
λnµn

q2
n

[E(Tn + Tn−1)]
2

− λnµn

q2
n

E(Tn + Vn+1)E(Tn + Tn−1), (n > 1),

which, on setting un to equal 2−nλnπn Var(Tn), can be rearranged to give

u0 =
(1 + π0)

2

λ0π0
+ 2

∞
∑

r=0

π[r + 1]2

λrπr
<∞

un = un−1 + 2−n
∞
∑

r=n

(1 + I(r>n))
π[r + 1]2

λrπr
+ 4

(

2n − π[n+ 1]

λnπn
+

2n−1 − π[n]
λn−1πn−1

)

+
21−nπn
qn

+
µn

qn

π[n+ 1]2

λnπn
+
λn
qn

π[n]2

λn−1πn−1
+

2π[n]π[n+ 1]

λnπn + λn−1πn−1
(n > 1).
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Hence

un 6 un−1 + 21−n

( ∞
∑

r=n

π[r + 1]2

λrπr

)

+ 4

(

2n

λnπn
+

2n−1

λn−1πn−1

)

+
21−nπn
qn

+

(

π[n+ 1]2

λnπn

)

+ 3

(

π[n]2

λn−1πn−1

)

So, remembering that (1) and (2) hold

un 6 A+B

n
∑

r=0

2r

λrπr
6 K

n
∑

r=0

2r

λrπr
(n > 0),

for some constants A, B, and K. This delivers the required result. �

x

y

a0

1

Figure 5.5 The concave function y = 1− e−x and a subchord

Proof of Lower Bound Lemma 5.5 The function f(x) = 1 − e−x is concave on the

bounded interval [0, a] (Fig. 5), so

f(x) > x

(

1− e−a

a

)

, for x ∈ [0, a].

Now

E
(

f(X)
)

> E
(

f(X);X 6 a
)

>

(

1− e−a

a

)

E(X ; x 6 a), (5.10)

and by Hölder’s inequality

E(X ;X > a) = ‖X I(X>a)‖1 6 ‖X‖2P(X > a)1/2 6
(

KE(X)P(X > a)
)1/2

.

Further aP(X > a) 6 E(X), so we deduce that

E(X ;X > a) 6 (K/a)1/2
E(X).
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Choosing a to be 4K, then E(X ;X 6 a) > 1
2E(X) and (5.10) becomes

E
(

f(X)
)

>

(

1− e−4K

8K

)

E(X). �

Proof of Lemma 5.7 We can write d2(x, y) as

d2(x, y) = u1(x, x) + u1(y, y)− Ex(e
−H(y))u1(y, y)− Ey(e

−H(x))u1(x, x).

For the upper bound, we use the fact that (1− e−x) 6 x to show that

d2(x, y) 6

[

sup
z∈F

u1(z, z)

]

(

Ex

(

H(y)
)

+ Ey

(

H(x)
))

.

We can split the expected hitting times into four summands, two being sums of (Vn)’s

from x and y to x∧ y, and two of (Tn)’s from x∧ y to x and y. Theorem 5.4 tells us that

the largest will be the down time from x ∧ y to y, so

d2(x, y) 6 4

[

sup
z∈F

u1(z, z)

]

Ex∧y

(

H(y)
)

.

For the upper bound we throw away some terms to reveal that

d2(x, y) >

[

inf
z∈F

u1(z, z)

]

(

Ex

(

1− e−H(y)
)

)

>

[

inf
z∈F

u1(z, z)

]

(

Ex∧y

(

1− e−H(y)
)

)

.

The function u1(z, z) is a continuous positive function on the compact space F , so the

sup and the inf are finite and positive. Remembering that
∑ 2n

λnπn
is finite, Theorem

5.4 and the Lower Bound Lemma 5.5 together give us that

Ex∧y

(

1− e−H(y)
)

> αEx∧y

(

H(y)
)

,

for some positive α. �
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5.4 Time Substitution

We aim to tie the Markov chain on the nodes, F , of the graph together with a Brownian

diffusion on the graph, G, comprising of F and the edges. We can construct the

diffusion by building up excursions from a point on level n as follows.

level n

level n-1

level n+1

1/(λ(n-1)π(n-1))

1/(λ(n)π(n))

Figure 5.6 Construction of diffusion

(We are only going to define the height and current edge of the process, the horizontal

position being thus determined.) Given a reflecting Brownian motion, we take its

excursions from 0 in order and make them excursions from our start point. The

edge that each excursion follows is randomly selected according to the law assigning

probability 1
2 to going up, and probability 1

4 to each of the down edges. Run this

process until it hits levels (n − 1) or (n + 1), then repeat starting from the new node.

We identify level n with the height xn :=
∑

r>n
1

λrπr
(Fig. 5.6).

The height process then becomes a reflecting Brownian motion on the finite

interval [0,
∑

n
1

λnπn
]. We notate the Gvalued process as (X̃t), and the height process

as (Ỹt). Then Trotter’s Theorem allows us a jointlycontinuous local time L̃Y for

the height process. For a good treatment of local times see V.3 of Blumenthal and

Getoor [12]. We can then time change Ỹ via

At :=
∑

n

πnL̃
Y (t, xn)

τt := inf{s > 0 : As > t}.

We note thatA is continuous and (weakly) increasing; τ is rightcontinuous and strictly

increasing; A(τt) = t; and τ(At) > t with equality if and only if t is a point of right

increase of A. We time change the diffusion by setting Yt to be Ỹ (τt), which by III.37

of Williams [39] is a strong Markov process on the support of A ({0} ∪ {xn : n ∈ N}).
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The local time of Ỹ at a level before it hits an adjacent level (the holding time of the

Y process) is exponentially distributed, by the strong Markov property, and with the

right normalisation of L̃Y , our choice of (xn) has ensured that the jump rates of Y

agree with those of the BDchain. In fact they are the same process. We can then define

the local time of Y , LY , on R
+ × N by

LY (t, n) :=
1

πn

∫ t

0

In(Ys) ds, (5.11)

and notice that by change of variable

L̃Y (t, xn) =
1

πn

∫ t

0

Ixn
(Ỹs) dAs =

1

πn

∫

J+∩[0,t]

Ixn
(Ỹs) dAs = LY (At, n),

where J+ is the set of the points of rightincrease ofA, which is all but countably many

points of the set of points of increase of A.

We can also time change the Gdiffusion by τ to produce Xt := X̃(τt), which is

similarly a Markov chain on F with the same jumprates as the process we studied

in previous sections. Consideration of the timetruncation arguments of Rogers and

Williams [32] should convince that the processes are the same. Given that conditions

(1)–(4) of Theorem 5.2 hold, we can construct a jointlycontinuous local time, LX for

X on F . It then follows that L̃X := {LX(At, x)}x∈F is a local time for X̃ at the points

F in G. We can extend L̃X by interpolation on the edges to be continuous on G.

It is now possible to construct processes on the boundary, C, via time changes of

X and X̃ induced by

A∂
t :=

∫

C

LX(t, ξ) c(dξ) = LY (t,∞),

and Ã∂
t :=

∫

C

L̃X(t, ξ) c(dξ) = L̃Y (t, 0),

with τ∂ and τ̃∂ respectively the rightcontinuous inverses. This gives us the strong

Markov Rprocesses Zt := X(τ∂t ) and Z̃t := X̃(τ̃∂t ). By the continuity of the local

times,

A∂(At) = lim
n→∞

2−n
∑

x∈level n

LX(At, x) = lim
n→∞

2−n
∑

x∈level n

L̃X(t, x) = Ã∂
t .



5.4 Processes on the Binary Tree 98

For any (A, τ)type pair, τt < s ⇐⇒ t < As, hence

τ̃∂t < s ⇐⇒ t < Ã∂
s ⇐⇒ t < A∂(As) ⇐⇒ τ∂t < As ⇐⇒ τ(τ∂t ) < s,

whence we can deduce that τ̃∂t = τ(τ∂t ) and that Zt = Z̃t. The process Z also has a

jointlycontinuous local time LZ , given by

LZ(t, ξ) = LX(τ∂t , ξ) = L̃X(τ̃∂t , ξ).

In summary we can say that Figure 5.7 commutes. We have thus produced the same

process by taking local time on the boundary of both the chain and the diffusion, which

allows us to work with whichever is more appropriate for the current problem.

Ỹ
n←− X̃

τ̃∂

−→ Z̃




y

τ





y

τ

∥

∥

∥

Y
n←− X

τ∂

−→ Z

Figure 5.7 A commutative diagram of processes

5.5 The Boundary Process

We now finally turn our attention to the boundary process Z. We know that the graph

processes (both chain and diffusion) spend no intervals of time on the boundary, but

rather the set of times at which they visit the boundary is a Cantor set obtained by

removing the open excursion intervals from the time axis. The process will (almost

surely) not be back in its original position at the righthand endpoints of these intervals

— even though it will return to its original position uncountably often almost imme

diately. As the boundary Cantor set is totally disconnected, we see that Z must be a

very discontinuous process. In fact Z is discontinuous at a dense, though countable,

set of times.

Lemma 5.8 Z is FD.

Proof of Lemma 5.8 By adapting the argument at the end of III.38 of Williams [39],

we can show that Z is FD if Eξ(1 − e−H̃(η)) goes to 0 as η → ξ in C, where H̃(η) :=
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inf{t > 0 : Zt = η}. Now H̃(η) is almost surely a point of rightincrease of A∂ , so

H̃(η) = A∂(H(η)). We can write H(η) as

H(η)
D
= Un :=

∞
∑

r=n

(Tr + Vr+1), where n = n(ξ ∧ η),

and A∂(H(η))
D
= A∗(Un) :=

∞
∑

r=n

A∗
r,

with A∗
r the local time on the boundary notched up while a version of the process did

an updown Tr + Vr+1. Then Un ↓ 0, A∗(Un) ↓ 0, and thus (1− e−A∗(Un)) ↓ 0 as η → ξ,

giving the result. �

By VI.28 of Rogers and Williams [33], there exists a Lévy system (N,H) for Z. In

our case Ht = t, and N as usual is a kernel, that is a function

N : (C,B(C)) −→ [0,∞],

such that N(·,Γ) is B(C)measurable, for all Γ in B(C),

and N(ξ, ·) is a σfinite measure on B(C), for all ξ in C.

In addition N(ξ, {ξ}) = 0 for all ξ in C, and N has the Lévy property, in the sense that

for any nonnegative borelmeasurable function f on C × C with f(ξ, ξ) = 0 for all ξ

in C, then

Mf
t :=

∑

s6t

f(Zs−, Zs)−
∫

(0,t]

ds

∫

C

N(Zs−, dξ)f(Zs−, ξ)

is a martingale, if the expectation of either term is finite. We can think of N(ξ, dη) as

the rate at which jumps from ξ to dη of Z occur.

We can calculate this directly using excursion theory, and we will not need any

more than is in Rogers [31]. By thinking of the diffusion height process, proposition 2

of Rogers [31] tells us that the rate of excursions from ξ in C to level n or above is

1

xn
=

1
∑∞

r=n ar
, where ar :=

1

λrπr
.

(The factor 1
2 is lost because we have reflection at the boundary so all our excursions

go up.) Therefore the rate of excursions from ξ which have their furthest extent on

level n is simply the difference

∆n :=
1

xn
− 1

xn−1
=

{ an−1

xnxn−1
n > 1

1
x0

n = 0.
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The chance that such an excursion ends up in dη ⊂ C is then (by symmetry) exactly

2nc(dη) if ξ∧η is on or below level n, and 0 if not. We deduce that the rate of excursions

from ξ to dη is given by the following:

Lemma 5.9

N(ξ, dη) = c(dη)





1

x0
+

n(ξ∧η)
∑

n=1

2
bn−1

xnxn−1



 .

Proof of Lemma 5.9 For ξ in C, let ξn be the point on level n above ξ, and let An be

the set {ζ ∈ C : ζ > ξn} of points of C below ξn. For any subset B of C\An, we notice

that N(·, B) is constant on An by symmetry. We can set f(x, y) := IAn
(x)IB(y), and

T := inf{t : Zt 6∈ An}. Then E(Mf
T ) = 0 implies that N(ξ, B) =

(

E(T )
)−1

P(ZT ∈ B).

In other words, N(ξ, B) is the rate of T jumping multiplied by the chance that a jump

goes into B. all of which is just the rate of jumping into B. So

N(ξ, dη) =

n(ξ∧η)
∑

n=0

∆n2nc(dη),

and the result is proved. �

Example In the geometric case, with

λn = αn,

then
1

λnπn
=
αγ−n

α− γ ,

µn = αn/γ,

xn =
αγ−(n−1)

(α− γ)(γ − 1)
,

and πn =
(α− γ

α

)

(γ/α)n,

bn =
α(2/γ)n

α− γ ,

and N(ξ, dη) = c(dη)
(

A(2γ)n +B
)

where n = n(ξ ∧ η); A, B > 0.

The conditions of Theorem 5.2 translate as (1) α > γ; (2) γ > 1; (3)&(4) γ > 2, and we

assume that all these hold. Then Hn, the first time to leave An, will be exponentially

distributed with rate

N(ξ, Ac
n) =

A(γn − 1)

2(γ − 1)
+B(1− 2−n).

We can form an analogue of the walk dimension of a diffusion as

lim
n→∞

logE(Hn)

−n = log γ.
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This can be seen as a measure of the asymptotic neighbourhood escape rate of the

process. As γ gets larger it takes longer to escape as the downward pressure inhibits

larger excursions. The normal scaling logarithm in the denominator is missing as there

is no obviously natural metric on C. �

There is (at least) one easy generalisation of the chain, keeping the same basic

structure, by taking the M ary tree with M down edges, all equally likely, from each

node (Fig. 5.8). In the case of M = 3, the RayKnight compactification can be thought

of as a treelike graph (Fig. 5.9).

0

Figure 5.8 Ternary Tree Figure 5.9 RayKnight compactification

Everything thus described still holds, with the alteration of the downjump time line

of Theorem 5.4 to

ETn =
Mn+1 − π[n+ 1]

λnπn
, Var(Tn) 6 K

Mn

λnπn

n
∑

r=0

M r

λrπr
, for some K.

And Theorem 5.2 holds with bn := Mn/λnπn. The Lévy kernel N is as stated above

for these new values of (bn), and the number 2 replaced by M .



Chapter Six
Twodimensional Local Time

“How often have I said to you that when you

have eliminated the impossible, whatever remains,

however improbable, must be the truth.”

— Sherlock Holmes

Sir Arthur Conan Doyle, The Sign of Four

102
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6.1 Introduction

For a general twodimensional diffusion, it is of course impossible to find a local time

at each point. However, we shall manage to construct a diffusion with a continuous

local time on a special onedimensional subspace. We are inspired by the process on

the Cantor set in Chapter Five, as viewed as the boundary of the binary tree. In that

case, the basic process was a Markov chain; and in our current continuous statespace

case, the exact necessary and sufficient conditions are slightly more involved, although

we shall develop easily verified sufficient conditions.

We shall work within the upper halfplane S := R × R
+ in R

2, and we shall

focus our attention on the bottom edge R0 := R × {0}, and on the point 0 = (0, 0) in

particular. We define a twodimensional diffusion Zt = (Xt, Yt) by taking Yt to be a

reflecting Brownian motion in R
+, and Xt to be governed by the SDE

dXt = σ(Yt) dBt, (6.1)

where B is a Brownian motion independent of Y , and σ is a nonnegative function on

R
+. AsX is a continuous local martingale, we can write it as the time change of a new

Brownian motion B̃,

Xt = B̃
(

∫ t

0

σ2(Ys) ds
)

. (6.2)

Now the time change
∫ t

0
σ2(Ys) ds can be written in terms of the local time, LY =

LY (t, y) of Y at y by time t, as
∫∞

0
σ2(y)LY (t, y) dy. Thus a necessary and sufficient

condition for X to be well defined by (6.2) is simply that

∫ K

0

σ2(y) dy <∞, for all finite K. (6.3)

The alert reader might point out that a time change of the process Z would result

in its horizontal component being a standard Brownian motion independent of the

vertical process Y which is now governed by the SDE

dYt =
dBt

σ(Yt)
. (6.4)
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Despite the simplicity of this representation, our original formulation will prove more

tractable, but either case contains the same moral. To make Z return to a point on R0,

either X will have to be moving very quickly, or Y must move very slowly.

We can see a simulation of this process to get an idea of how it behaves. Figure 6.1

shows a particular sample path with σ2(y) = y−0.9, starting at (0, 1), and for ease of

inspection, we condition the Y coordinate to move deterministically towards 0.

-0.5 0 0.5 1 1.5 2 2.5

0.2

0.4

0.6

0.8

1

Figure 6.1 The Z process moves towards the xaxis

We can believe from this picture that Z could actually build up a local time around

about the point (2, 0) where it hits the xaxis. We can start to prove this rigorously in

the next section.

6.2 Calculations

We shall denote the probability transition density of Z by pZt (w, z) for w and z in S,

and as everything in sight is reversible, pZt is symmetric with respect to the uniform

invariant measure. Recall that a Lévy process is a Rprocess (rightcontinuous with left

limits) with stationary independent increments. If X is a Lévy process started at 0,

then

E exp(iθXt) = exp
(

−tψ(θ)
)

where ψ(θ) = icθ + 1
2σ

2θ2 +

∫

R

(

1− eiθy +
iθy

1 + y2

)

ν(dy),
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and where c ∈ R is the drift, σ > 0 is the Brownian component, and ν is a measure on

R such that
∫

(1 ∧ y2) ν(dy) <∞ and ν({0}) = 0. Further, if X is purely discontinuous

and symmetric (pt(0, G) = pt(0,−G)) then c = σ = 0 and ψ is real, so that ψ has

LévyKhinchine representation

ψ(θ) =

∫

R

(

1− cos(θy)
)

ν(dy).

Pausing only to remember that a point x is regular if Px(Tx = 0) = 1, where Tx :=

inf{t > 0 : Xt = x, or Xt− = x} is the first time to return to x, we can call on the

following condition for regularity:

Theorem 6.1 (Bretagnolle and Kesten) Let X̃ be a symmetric Lévy process with prob

ability transition density pt(x, y) = pt(0, |x − y|), λresolvent uλ, given by uλ(x, y) :=
∫∞

0
e−λtpt(x, y) dt, which is monotone in |x − y|, and cumulant χ = χ(θ) which is real,

nonnegative and even, such that

E0 exp(iθX̃t) = exp(−tχ(θ)). (6.5)

Then setting C := {x : P0(Tx <∞) > 0}, exactly one of the following holds:

Either (i) C = ∅, uλ(0, 0) =∞,
∫∞

0 (λ+ χ(θ))−1 dθ =∞ (∀λ), and 0 is not regular,

or (ii) C = R, uλ(0, 0) < ∞,
∫∞

0 (λ + χ(θ))−1 dθ < ∞, uλ(0, x) = kλE0(exp(−λTx)) for

some finite kλ (∀λ), and 0 is a regular point.

Proof of Theorem 6.1 From Bretagnolle [13] and Kesten [26]. Note that if 0 is regular,

then P0(T0 < ∞) = 1, so that 0 ∈ C, and so (ii) must hold. We can also replace their

condition (kλ < ∞) by (uλ(0, 0) < ∞), because of the monotonicity of uλ. This is the

result in the more familiar form: if uλ is bounded, then it is continuous, so the point is

regular. Of course, all the points are regular if and only if any one of them is. �

Before we can calculate the resolvent and apply Theorem 6.1, we need to calculate

the probability transition density, and our first step is to prove a lemma about the

maximum height of a scaled Brownian excursion.

Lemma 6.2 Let W = (Wu)
1
u=0 be a scaled Brownian excursion of length 1, let W ∗ =

supuWu, and let δ be positive, then

E
(

(W ∗)δ
)

<∞. (6.6)
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Proof of Lemma 6.2 The distribution ofW ∗ was found explicitly by Kennedy [25], but

it is easier for us to use a remark of his, later proved and made intuitive by Vervaat [37],

that we can write W ∗ as W ∗ = V ∗ + (−V )∗ where V = (Vu)
1
u=0 is a Brownian bridge

with V0 = V1 = 0. By using the observation that for all positive x and y

(x+ y)δ 6

{

xδ + yδ if δ 6 1,

2δ−1(xδ + yδ) if δ > 1,
(6.7)

it is sufficient to show that E
(

(V ∗)δ
)

is finite. By change of variable, we can write V in

terms of a Brownian motion B as

V
( 1

1 + t

)

=
Bt

1 + t
(t > 0),

and thus P(V ∗ > c) = P(∃t : Bt = c+ ct) = exp(−2c2). So we can calculate E
(

(V ∗)δ
)

as 2−δ/2Γ(1 + δ/2). �

The height process Y has a local time LY (t, y), and we set τ to be the right

continuous inverse to LY (t, 0),

τt := inf{s : LY (s, 0) > t}. (6.8)

Then a timechanged process X̃t defined by X̃t := X(τt) is another Markov process on

R. We can calculate the transition density function pt of X̃ , which is also symmetric,

as is its 1resolvent u1. There are analogues for Z of the following theorems about X̃

which directly prove thatZ has a local time on R0, but we cannot deduce its continuity.

Although our path is not the direct route to the local time, we will end up in a stronger

position.

Theorem 6.3 The process X̃ has symmetric transition density function pt given by

pt(z, x) = E
(

(2πΣt)
− 1

2 exp(−(x− z)2/2Σt)
)

, (6.9)

where Σt : =

∫ τt

0

σ2(Ys) ds.

In addition the functions pt(0, x) and u1(0, x) are continuous and monotone for x positive.

Further, if σ2(y) = y−α for some α in (0, 1), then u1(0, 0) is finite and u1(0, x) is thus

continuous at x = 0, so each point of R is regular for X̃ .
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Proof of Theorem 6.3 Without loss of generality, we can take z = 0. Let G be the

filtration induced by Y (τt), that is, Gt := σ(Ys : 0 6 s 6 τt), then Σt is Gtmeasurable,

and X̃t conditional on Gt has a normal distribution with zero mean and variance Σt.

Thus
1

ǫ
P0(X̃t ∈ [x, x+ ǫ] | Gt) =

1

ǫ
√

2πΣt

∫ x+ǫ

x

e−y2/2Σt dy ↑ e−x2/2Σt

√
2πΣt

with monotone convergence on the right as ǫ tends downwards to 0 (for x non

negative). So by the Monotone Convergence theorem the probability density result

follows.

As ue−x2u2/2 6 e−
1
2 /x for all u, we note that the righthand side limit above is

continuous and monotone in positive x, and dominated by (2πe)−
1
2 /x. Thus pt(0, x)

is also continuous and monotone in positive x and dominated by k/x. Dominated

Convergence now shows that u1(0, x) inherits these same properties.

Given that σ2(y) = y−α, we need to calculate an upper bound for (Σt)
− 1

2 , so we

first need a lower bound for Σt itself. We shall begin by remembering some scaling

properties of Brownian motion. If Y is our reflecting Brownian motion in R
+, then for

any positive c the new process Ỹ given by

Ỹt := c−1Yc2t

is another reflecting Brownian motion. The corresponding local time LỸ and LY , and

their inverses τ̃ and τ are related by

LỸ (t, y) = c−1LY (c2t, cy), and τ̃t = c−2τct.

We can see that the corresponding Σ and Σ̃ satisfy

Σ̃t = cα−2Σct.

By choosing c to be t−1, we see that

Σt
D
= t2−αΣ1. (6.10)

We shall now focus on obtaining bounds for Σ1. Let T be the length of the longest

excursion of Y in the interval [0, τ1]. Now we know (Rogers [31]) that

P(T 6 s) = P(#{excursions of length > s in [0, τ1]} = 0) = exp(−a/
√
s),
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for a constant a. This longest excursion will be distributed as (
√
TW (u/T ))Tu=0, where

W is a scaled Brownian excursion of length 1 independent of T . Thus, because σ is

decreasing,

Σ1 > T 1−α/2(W ∗)−α,

where W ∗ is the supremum of W . So, for β positive,

E(Σ−β
1 ) 6 E(T−β+αβ/2)E

(

(W ∗)αβ
)

<∞, (6.11)

because E(T−γ) = a−2γΓ(1 + 2γ) is finite, and all moments of W ∗ exist by Lemma

6.2. In particular, (6.10) and (6.11) give us the bound that E(Σ− 1
2

t ) 6 kt−1+α/2 for some

constant k. So pt(0, 0) is dominated by a multiple of t−1+α/2, which is integrable with

respect to e−t dt over (0,∞). Thus u1(0, 0) is finite, and regularity follows immediately

from Theorem 6.1. �

6.3 Local Times

For the present, we take σ2(y) = y−α for some α in (0, 1). As in V.3.13 of Blumenthal

and Getoor [12], we may now deduce the existence of a local time of X̃ , L̃ = {L̃(t, x) :

t ∈ R
+, x ∈ R}. We shall, similarly to Chapter Five, use theorems in Marcus and

Rosen [28] to ensure that L̃ is jointly continuous in time and space. Firstly we have to

obtain some bounds on differences of u1.

Theorem 6.4 Let σ2(y) = y−α for some α in (0, 1), and let d be a metric defined on R by

d(x, y) :=
(

u1(x, x) + u1(y, y)− 2u1(x, y)
)

1
2 , (6.12)

then, with β := α/(4− 2α), and for some positive constants c and k, then

c|x− y|β 6 d(x, y) 6 k|x− y|β (|x− y| 6 1). (6.13)

Proof of Theorem 6.4 As d2(x, y) = 2
(

u1(0, 0) − u1(0, y − x)
)

, we will calculate

u1(0, 0)− u1(0, x) which, from (6.9) and (6.10) is given by

u1(0, 0)− u1(0, x) = E

∫ ∞

0

e−tt−1+α/2(2πΣ1)
− 1

2
(

1− exp(−tα−2x2/2Σ1)
)

dt.
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We can break up the integral into two parts over the pair of intervals [0, x2/(2−α)] and

[x2/(2−α),∞). The former of these has an upper bound of

I1 6

∫ x2/(2−α)

0

e0t−1+α/2
E(2πΣ1)

− 1
2 dt = kx2β.

Remembering that
(

1− exp(−y)
)

6 y, we can bound the latter as

I2 6

∫ ∞

x2/(2−α)

e0t−3+3α/2x2
E(8πΣ3

1)
− 1

2 dt = kx2β,

using (6.11) to give the finiteness of E(Σ
−3/2
1 ). Hence d(x, y) 6 k|x − y|β , where

β = α/(4 − 2α). We can find a lower bound for d by merely considering the first

integral (taking x 6 1) as

I1 >

∫ x2/(2−α)

0

e−1t−1+α/2
E
(

(2πΣ1)
− 1

2 (1− exp(−1/2Σ1))
)

dt > cx2β. �

We can now use theorems 2 and 8.4 of Marcus and Rosen [28], which say that

Theorem 6.5 (Marcus and Rosen) IfX is a symmetric Markov process onRwith continuous

1resolvent u1 and local timeL = {L(t, x) : t ∈ R
+, x ∈ R}, and if there exists a nonnegative

nondecreasing function σ̂ such that

d(x, y) 6 σ̂(|x− y|), (x, y ∈ R)

and

∫
1
2

0

σ̂(z) dz

z(log(1/z))
1
2

<∞,

then the local time L is continuous on R
+ × R almost surely.

We can see immediately that, with σ̂(z) = kzβ , the local time L̃ of X̃ is continuous

on R
+×R. Alternatively, we could apply the results of Barlow [2] to the Lévy process

X̃ . Taking his theorems B(a) and 1, we have that

Theorem 6.6 (Barlow) For a general σ2 satisfying (6.3), there exists a real functionχ = χ(θ)

such that

E exp(iθX̃t) = exp(−tχ(θ)), (6.14)

and then all points are regular for X̃ if and only if
∫ ∞

0

dθ

1 + χ(θ)
<∞, (6.15)
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and, if so, then there exists a jointlycontinuous version of the local time of X̃ on R if and only

if

and

∫
1
2

0

ϕ(z) dz

z
√

log(1/z)
<∞, (6.16)

where ϕ2(y) :=

∫ ∞

0

(1− cos(θy)) dθ

1 + χ(θ)
. (6.17)

Proof of Theorem 6.6 As X̃ is spatiallysymmetric, χ is real. In this case the Lévy

Khinchine representation of χ is

χ(θ) =

∫ ∞

0

(

1− cos(θy)
)

ν(dy), (6.18)

where ν is a measure on R
+ satisfying

∫

(1∧ y2) ν(dy) <∞, ν({0}) = 0. The condition

(6.15) is condition (0.4) of Barlow [2] and guarantees the existence of a local time at

each point. In this case it is also sufficient to give that

∫ 1

0

y ν(dy) =∞, (6.19)

which is condition (0.5) of Barlow [2], and ensures that the local time is continuous at

each fixed point. We can see that this holds, using the fact that (1− cos x) 6 x, because

χ(θ) =

∫ 1

0

(

1− cos(θy)
)

ν(dy) +

∫ ∞

1

(

1− cos(θy)
)

ν(dy)

6 θ

∫ 1

0

y ν(dy) + 2ν[1,∞].

As the latter term is finite, if (6.19) did not hold then (6.15) would not either. The

necessity of (6.15) comes from Theorem 6.1. Everything else will now follow from

Barlow [2], because the function ϕ(y) inherits the monotonicity of u1(0, y). �

Note that the function ϕ(y) of Theorem 6.6 above is exactly the function d(0, y)

of Theorem 6.5. The process Σ is also a subordinator, so E exp(−θΣt) = exp(−tψ(θ))
for a nonnegative function ψ. Remembering that X̃t conditional on the height process

has a normal distribution with zero mean and variance Σt, then

E exp(iθX̃t) = E exp(− 1
2θ

2Σt) = exp
(

−tψ( 1
2θ

2)
)

.
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Thus we have an identity between χ and ψ, as χ(θ) = ψ( 1
2θ

2). In the case where

σ2(y) = y−α, then ψ(θ) ≈ θ1/(2−α), and χ(θ) ≈ θ1+2β for large θ. The critical cases

are going to be when the function σ2 is slowly varying at 0. Recall that a function

f is slowly varying if f(λx)/f(x) tends to 1 as x tends to a limit (usually either 0 or

infinity), for each positive λ. We can reexpress the necessary and sufficient conditions

in this case.

Proposition 6.7 If σ2 satisfies (6.3), tends to infinity at 0, and is slowly varying at 0, then

there exists a unique (up to asymptotic equivalence) function l = l(θ), slowly varying at

infinity, such that

l2(θ)σ2
(

l(θ)/
√
θ
)

→ 1 as θ →∞. (6.20)

Then X̃ has a local time on R if and only if

∫ ∞

1

l(θ) dθ

θ
<∞, (6.21)

and, if so, then the function ϕ = ϕ(y) of (6.17) is asymptotically equal to

ϕ2(y) ≈
∫ ∞

1/y2

l(θ) dθ

θ
, as y → 0, (6.22)

where f(x) ≈ g(x) means that the lim sup and the lim inf of f/g are finite and positive

respectively.

Proof of Proposition 6.7 From the definition of Σt at (6.9) and our expressions for

excursions in the proof of Theorem 6.3, we can write a jump of Σ as

△Σt = △τt
∫ 1

0

σ2
(

(△τt)
1
2Ws

)

ds, (6.23)

whereW is a scaled Brownian excursion of length 1. Now (1.5.6 of Bingham et al. [10])

for every positive δ (small) and K (large), there exists t0 such that

σ2(ty)

σ2(t)
6 y−δ, t 6 t0, y ∈ (0, K],

which is integrable with respect to dy on (0, K], and the lefthand side goes to 1 as t

goes to 0. So, by the Dominated Convergence theorem,

∫ 1

0

σ2(tWs) ds =

∫ W ∗

0

σ2(ty)L(1, y) dy ∼ σ2(t) as t ↓ 0.



6.3 Twodimensional Local Time 112

Thus△Σt ∼ (△τt)σ2
(

(△τt)
1
2
)

as△τt gets small. So for large θ, writing µ for the Lévy

measure of Σ,

ψ(θ) =

∫ ∞

0

(1− e−θs)µ(ds) ∼
∫ ∞

0

(

1− e−θtσ2(
√
t)
) dt

t3/2
,

because the Lévy measure for (△τt) has density t−3/2 dt. The function l = l(θ) exists by

1.5.13 of Bingham et al. [10], and if t is set to be l2(θ)/θ, then θtσ2(
√
t) is asymptotically

1 as θ gets large. So now

ψ(θ) ≈ θ
∫ l2(θ)/θ

0

σ2(
√
t)t−

1
2 dt+

∫ ∞

l2(θ)/θ

dt

t3/2

≈ l(θ)
√
θ

∫ 1

0

σ2(ul(θ)/
√
θ) du+

√
θ

l(θ)
.

As before
∫ 1

0 σ
2(ul(θ)/

√
θ) du varies asymptotically with σ2(l(θ)/

√
θ) as θ grows large,

so by (6.20), ψ(θ) ≈
√
θ/l(θ), and thus χ(θ) = ψ( 1

2θ
2) ≈ θ/l(θ2). Condition (6.15) holds

if and only if
∫ ∞

1

dθ

χ(θ)
≈
∫ ∞

1

l(θ2) dθ

θ
= 1

2

∫ ∞

1

l(θ) dθ

θ

is finite. Now we can break up the expression (6.17) for ϕ into two integrals I1 and I2

as

ϕ2(y) =

∫ 1/y

0

(

1− cos(θy)
)

dθ

1 + χ(θ)
+

∫ ∞

1/y

(

1− cos(θy)
)

dθ

1 + χ(θ)
.

Then we can approximate the integrals asymptotically as

I1(y) ≈ y2

∫ 1/y

0

θl(θ2) dθ =

∫ 1

0

l(u/y2) du ∼ l(1/y2),

I2(y) ≈
∫ ∞

1/y

l(θ2) dθ

θ
=

∫ ∞

1

l(θ/y2) dθ

θ
, as y ↓ 0.

So I2/I1 behaves like
∫∞

1
l(θ/y2)/l(1/y2)θ−1 dθ which goes to infinity as y goes to 0.

Hence the result follows. �

Let us return for a moment to the binary tree of the discrete setting of Chapter

Five. Recalling the model of it introduced at the start of Section 5.4, we have the

height process a reflecting Brownian motion observed at the points xn :=
∑∞

r=n ar,

where an := 1
λnπn

. We will embed the discrete process in the plane by making the
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horizontal distance between adjacent points on leveln equal to 2−n. This is the distance

necessary to preserve the topology and to put all the points of [0, 1] in the boundary.

We remember, from (6.2) and (6.4), that σ is merely the ratio of expected infinitessimal

Xmovements to expected infinitessimal Y movements. Then, on level n as Y moves

an, X moves 2−n, so

σ(xn) = b−1
n , where bn :=

2n

λnπn
.

As this is a heuristic derivation, we will make the additional simplifying assumption

that bn is decreasing. Then ar 6 2n−ran (r > n), so xn 6 2an, and thus an ≈ xn.

Setting tn := x2
n and θn := 22n ≈

(

tnσ
2(
√
tn)
)−1

, then l(θn) = (tnθn)
1/2 ≈ bn. So, by

approximating integrals with infinite sums,

∫ ∞

1

l(θ) dθ

θ
≈

∞
∑

n=0

(θn+1

θn
− 1
)

l(θn) ≈ 3
∞
∑

n=0

bn,

and ϕ2(θ−1/2
n ) =

∫ ∞

θn

l(θ) dθ

θ
≈

∞
∑

r=n

br.

Thus

∫ 1/2

0

ϕ(z) dz

z
√

log(1/z)
=
√

log 2

∫ ∞

1

ϕ(2−t) dt√
t

≈
∞
∑

n=1

√

1
n

∑∞
r=n br.

We see now that the conditions (6.21) and (6.16) for existence and continuity of local

times in the continuous case translate back into lines (3) and (4) of Theorem 5.2. This

makes the promised connection between the summation conditions of the discrete case

and our current application of the known conditions in the continuous case.

We can also perform calculations about the Lévy kernel and walk dimension as

we did in Section 5.5, in that:

Proposition 6.8 The process X̃ has a Lévy kernel N as defined in Section 5.5, such that:

(i) For σ2 slowly varying, as in Proposition 6.7,

N(0, dx) ≈ dx

x2l(x−2)
,

and (ii) for σ2(y) = y−α, for some α in (0, 1) and with β = α/2(2− α),

N(0, dx) ≈ dx

x2+2β
.
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Then, setting Hx := inf{t > 0 : |X̃t| > x}, the time to exit from the xball, then (EHx)
−1 =

∫∞
x
N(0, dx), and so

lim
x↓0

logEHx

logx
=

{

1 in case (i),

1 + 2β in case (ii).

Proof of Proposition 6.8 If µ is the Lévy measure of Σ, then

N(0, dx) = dx

∫ ∞

0

e−x2/2sµ(ds)√
2πs

.

In case (i), we replace s with tσ2(
√
t) and replace µ(ds) with the Lévy measure for

τ , t−3/2 dt. A change of variable to u =
√
t/(xl(x−2)), splitting the resulting inte

gral up into two parts over (0, 1) and (1,∞), will then finish the calculation as in

Proposition 6.7.

In case (ii), we need only note that△Σ ∼ (△τ)1−α/2 for small increments, so that

µ(ds) ∼ s−(3/2+β) ds. The rest is easy calculus. �

Our final comment on the continuity of local times of X̃ before we move back to

looking at the original Z process, is to find sufficient conditions purely in terms of σ

itself:

Corollary 6.9 (Sufficient conditions) If σ2 satisfies (6.3), and is slowly varying tending

to infinity at 0, and further satisfies

σ
(

tσ(t)
)

σ(t)
→ 1 as t→ 0, (6.24)

then X̃ has a local time on R if and only if

∫ 1

0

dt

tσ(t)
<∞, (6.25)

and also the function ϕ of (6.17) behaves asymptotically as

ϕ2(y) ≈
∫ y

0

dt

tσ(t)
, as y → 0. (6.26)

Proof of Corollary 6.9 Writing (6.24) as σ(
√
tσ(
√
t)) ∼ σ(

√
t) as t goes to 0, and setting

t = l2(θ)/θ, where l is as at (6.20), then θ ∼ (tσ2(
√
t))−1 and so

l(θ) ∼ 1

σ(
√
t)
∼ 1

σ(1/
√
θ)

as θ →∞.
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Thus
∫ ∞

1

l(θ) dθ

θ
≈
∫ ∞

1

dθ

θσ(1/
√
θ)

= 2

∫ 1

0

dt

tσ(t)
,

and also

ϕ2(y) ≈
∫ ∞

1/y2

l(θ) dθ

θ
∼ 2

∫ y

0

dt

tσ(t)
, as y → 0.

Thus the result is proved. �

Example In the case where σ2(y) =
(

log(1/y)
)2(1+δ)

, then l(θ) ≈ (log θ)−(1+δ), and

(6.21) and (6.25) hold if and only if δ is greater than 0. Then the function ϕ(y) ≈
(

log(1/y)
)−δ/2

, and (6.16) will hold if and only if δ is greater than 1.

Armed with a jointlycontinuous local time for X̃ , we can now proceed to find

one for Z itself.

Theorem 6.10 If L̃ exists and is continuous, then the process Zt = (Xt, Yt) has a local time

LZ on R0 := R× {0} given by

LZ(t, (x, 0)) = L̃(LY (t, 0), x), (6.27)

and thus LZ is jointly continuous on R
+ × R0.

Proof of Theorem 6.10 DefineL(t, x) := L̃(LY (t, 0), x)which is a continuous function,

increasing in t for each x and only increases when Yt = 0 and Xt = x. Recall from

Blumenthal and Getoor [12] that the local time of a processX at a point x is the unique

(up to normalisation) continuous increasing function l(t) such that l(0) = 0, l increases

at t only if Xt = x, and is additively Markovian in the sense that

l(t+ s, ω) = l(t, ω) + l(s, θtω),

where θt is the shift operator defined by Xu(θtω) = Xu+t(ω). In our case

L̃(t+ s, x, ω) = L̃(t, x, ω) + L̃(s, x, θ(τt)ω),

and LY (t+ s, 0, ω) = LY (t, 0, ω) + LY (s, 0, θtω).

Thus, because in addition L̃(s, x, θuω) is constant for u in any interval of the form

[τt−, τt], we can write L(t+ s, x, ω) as L(t, x, ω) + L(s, x, θtω). So L is indeed the local

time of Z on R0. �
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We complete this section with a collection of results about Z and LZ which are

now straightforward.

Theorem 6.11 Let LZ = {LZ(t, (x, 0)) : t ∈ R
+, x ∈ R} be a continuous version of the

local time of Z on R0. Then

(a)

∫

R

LZ(t, (x, 0)) dx = LY (t, 0) (t > 0). (6.28)

(b) (Occupation density formula) For g a bounded Borel measurable function,

∫ t

0

g(Xs)L
Y (ds, 0) =

∫

R

g(x)LZ(t, (x, 0)) dx (t > 0). (6.29)

(c) If X̃ is recurrent then Zt visits all the points in K by some finite time, for each compact K

in R0.

Proof of Theorem 6.11

(a) This is immediate from (6.27) and the fact that
∫

R
L̃(t, x) dx = t.

(b) For almost all times s, if LY (ds, 0) > 0 then τ(LY (s, 0)) = s. Thus

∫ t

0

g(Xs)L
Y (ds, 0) =

∫ t

0

g
(

X
(

τ(LY (s, 0))
)

)

LY (ds, 0)

=

∫ LY (t,0)

0

g(X̃u) du =

∫

R

g(x)L̃(LY (t, 0), x) dx =

∫

R

g(x)LZ(t, (x, 0)) dx.

(c) As the local time is continuous, compactness arguments will give this result imme

diately as long as X̃ is recurrent (see the next Section). �

6.4 Recurrence

We are working here with what is sometimes called ‘pointrecurrence’ rather than

‘intervalrecurrence’. Pointrecurrence means simply that the process will hit points

(P0(Tx < ∞) = 1), whilst intervalrecurrence merely means that all neighbourhoods

of a particular point will eventually be hit.

The representations used in Barlow [2], can be equally effective in producing nec

essary and sufficient conditions for the process X̃ to be recurrent. In essence, whereas
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σ had to get large at 0 quickly enough for a local time to exist and be continuous, σ

must either stay bounded or not get large too quickly at infinity for the process to be

recurrent. Intuitively, if σ is large at infinity, then when Y goes on a large excursion,

X moves a very long way away and may never return. We can produce a composite

theorem which is an analogue of Theorem 6.6, Proposition 6.7 and Corollary 6.9. In

our case, pointrecurrence implies regularity as the set C of Theorem 6.1 is equal to R

if the process hits points.

Theorem 6.12 For a general σ2 satisfying (6.3), there exists a real function χ = χ(θ) such

that

E exp(iθX̃t) = exp(−tχ(θ)).

Then the process X̃ is (point)recurrent if and only if both all points are regular for it, and

∫ 1

0

dθ

χ(θ)
=∞. (6.30)

Further, if σ2 is slowly varying at infinity, then there exists a unique (up to asymptotic

equivalence) function h = h(θ), slowly varying at 0, such that

h2(θ)σ2
(

h(θ)/
√
θ
)

→ 1 as θ → 0. (6.31)

Then X̃ is recurrent if and only if

∫ 1

0

h(θ) dθ

θ
=∞. (6.32)

Further, if σ also satisfies

σ
(

tσ(t)
)

σ(t)
→ 1, as t→∞, (6.33)

then X̃ is recurrent if and only if
∫ ∞

1

dt

tσ(t)
=∞. (6.34)

Proof of Theorem 6.12 From Theorem 6.1, E0(exp(−λTx) is proportional to uλ(0, x)

as x varies, so

E0

(

e−λT (x)
)

=
uλ(0, x)

uλ(0, 0)
,
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and so X̃ is recurrent if and only if uλ(0, x) ∼ uλ(0, 0) as λ goes to 0, for all x. Now, by

(0.10) of Barlow [2], as X̃ is symmetric

uλ(0, x) =
1

π

∫ ∞

0

cos(θx) dθ

λ+ χ(θ)
,

so as λ tends down to 0,

uλ(0, 0)− uλ(0, x) =
1

π

∫ ∞

0

(

1− cos(θx)
)

dθ

λ+ χ(θ)
↑ 1

π

∫ ∞

0

(

1− cos(θx)
)

dθ

χ(θ)
. (6.35)

We want to show that the right hand side of the above line is finite. Firstly we note

that 1− cos(x) is of size x2 for small x. Precisely we have that ax2 6 1− cos(x) 6 1
2x

2

for all x in [0, 1], for some a. Thus, for θ 6 1, from (6.18)

χ(θ) > aθ2

∫ 1

0

y2 ν(dy) > a1θ
2,

for some constant a1, and so

1− cos(θx)

χ(θ)
6

x2

2α1
for θ 6 (1 ∧ x−1).

Finally, as χ is increasing, we have for θ > 1 that

1− cos(θx)

χ(θ)
6

4

a2(1 + χ(θ))
,

where a2 is the constant (1∧χ(1)). As X̃ has a local time, (6.15) holds, so we can deduce

that the integral on the righthand side of (6.35) is finite. Now uλ(0, 0) ↑ u0(0, 0) =
∫∞

0 χ−1(θ) dθ, so if (6.30) holds, then this is infinite and the ratio of uλ(0, x) to uλ(0, 0)

indeed tends to 1. Conversely if (6.30) does not hold, then that and (6.15) together

show that u0(0, 0) is finite, and so the ratio tends to a limit strictly less than 1.

To achieve (6.32), we now aim to repeat our calculations of Proposition 6.7.

Again, by 1.5.6 of Bingham et al. [10], for every δ (small), there exists T0 (large) such

that
σ2(u)

σ2(v)
6 (u/v)δ ∨ (v/u)δ, u, v > T0.

Then
σ2(ty)

σ2(t)
I(ty > T0) 6 (yδ ∨ y−δ), t > T0,
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which is integrable with respect to dy on (0,W ∗], and the lefthand side goes to 1 as t

goes to infinity. Also

∫ T0/t

0

σ2(ty)

σ2(t)
dy =

1

tσ2(t)

∫ T0

0

σ2(u) du,

which goes to 0 as t goes to infinity. Hence we can deduce that

∫ 1

0

σ2(tWs) ds =

∫ W ∗

0

σ2(ty)L(1, y) dy ∼ σ2(t) as t→∞,

and so, by (6.23), △Σt ∼ (△τt)σ2
(

(△τt)
1
2
)

as △τt gets large. We decompose the

representation of ψ into three integrals as (for K large)

ψ(θ) =

∫ K

0

(1− e−θs)µ(ds) +

∫ h2(θ)/θ

K

(1− e−θs)µ(ds) +

∫ ∞

h2(θ)/θ

(1− e−θs)µ(ds),

which we denote by I1, I2 and I3. For small θ

I1 6 θ

∫ K

0

s µ(ds),

I2 ≈ θ
∫ h2(θ)/θ

K

tσ2(
√
t)
dt

t3/2
=
√
θh(θ)

∫ 1

√
Kθ/h(θ)

σ2(uh(θ)/
√
θ) du ≈

√
θ/h(θ),

I3 ≈
∫ ∞

h2(θ)/θ

µ(ds) =
√
θ/h(θ).

So ψ(θ) ≈
√
θ/h(θ) for small θ, and so χ(θ) ≈ θ/h(θ2). Thus (6.30) holds if and only if

∫ 1

0

h(θ2) dθ

θ
= 1

2

∫ 1

0

h(θ) dθ

θ
=∞.

Finally, if (6.33) holds, then h(θ) ∼ σ−1(1/
√
θ) for small θ and (6.34) follows as in

Corollary 6.9. �

We note that condition (6.30) is exactly the necessary and sufficient condition of

theorem 16.2 of Port and Stone [30] required for the process to be intervalrecurrent.

Thus, the first part of our theorem simply asserts that the process is pointrecurrent if

and only if it is both intervalrecurrent and regular. Intuitively, backed up by (6.15)

and (6.30), regularity is a local property depending on small jumps (σ near zero) and

the behaviour of χ at infinity, independent of intervalrecurrence which is a nonlocal

property depending on long jumps (σ near infinity) and the behaviour of χ at zero.
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